-
公开(公告)号:CN116598458A
公开(公告)日:2023-08-15
申请号:CN202310588850.7
申请日:2023-05-24
Applicant: 荆门市格林美新材料有限公司
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525 , C01G53/00 , B22F1/16 , B22F1/102 , B22F9/24
Abstract: 本发明提供了一种正极材料及其制备方法和应用。所述正极材料包括内核以及位于内核表面的包覆层;所述内核包括多孔镍材料,所述包覆层包括镍钴锰酸锂材料。本发明将疏松多孔的多孔镍材料作为内核材料,可以作为正极材料变形的缓冲层,减少内部应力的产生,同时,还可以提供锂离子存储空间,提高了正极材料的结构稳定性,从而提升了正极材料的电化学性能。
-
公开(公告)号:CN115818733A
公开(公告)日:2023-03-21
申请号:CN202211445089.3
申请日:2022-11-18
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/00 , H01M4/505 , H01M4/525 , H01M10/0525
Abstract: 本发明提供一种锆掺杂均匀的镍锰氢氧化物及其制备方法和应用,所述制备方法包括以下步骤:配制摩尔比为Ni:Mn=x:y的镍锰二元液,其中0.2≤x≤0.8,x+y=1;将锆源加入到所述镍锰二元液中,得到掺锆二元液,所述掺锆二元液中锆的浓度为2‑4mmol/L;将所述掺锆二元液与沉淀剂和络合剂以(30‑40):(9‑13):(0.5‑2.7)的流速比通入反应容器中进行共沉淀反应,得到掺锆的镍锰氢氧化物。本发明采用特定锆浓度的掺锆二元液与沉淀剂和络合剂以一定的流速进行共沉淀反应,制得掺锆的镍锰氢氧化物,此方法成本较低,可有效稳定掺锆二元液中的锆含量,得到锆分布均匀的镍锰氢氧化物。
-
公开(公告)号:CN115385393A
公开(公告)日:2022-11-25
申请号:CN202211015143.0
申请日:2022-08-23
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/00 , H01M4/525 , H01M10/0525
Abstract: 本发明提供了一种锆掺杂的镍钴锰氢氧化物及其制备方法和应用。所述制备方法包括以下步骤:将锆掺杂的镍钴锰的混合盐溶液、沉淀剂溶液和络合剂溶液并流加入,进行共沉淀反应,得到所述锆掺杂的镍钴锰氢氧化物。本发明采用镍钴锰主元素与掺杂元素锆共同进料的方式,减少了冗余工序,降低了成本,同时能够有效稳定镍钴锰中锆元素的含量,且可采用原有成熟的共沉淀工序,减少了工艺改造,降低了成本,得到锆分布均匀的镍钴锰氢氧化物前驱体,进而提升了锆掺杂的镍钴锰正极材料的电化学性能。
-
公开(公告)号:CN115321610A
公开(公告)日:2022-11-11
申请号:CN202211057338.1
申请日:2022-08-31
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/00 , H01M4/52 , H01M10/0525
Abstract: 本发明提供了一种锆铝双掺杂的镍钴锰氢氧化物及其制备方法和应用。所述制备方法包括以下步骤:将镍钴锰锆的混合盐溶液、铝盐溶液、沉淀剂溶液和络合剂溶液并流加入,进行共沉淀反应,得到所述锆铝双掺杂的镍钴锰氢氧化物。本发明在镍钴锰前驱体材料制备过程中,同时掺入锆和铝这两种不同离子半径的金属阳离子,采用锆与镍钴锰主元素同时进料,铝分开进料的方式,不仅实现了前驱体材料的结构稳定,还实现了铝元素的均匀掺杂,提升了镍钴锰氢氧化物的产品品质,进而提升了正极材料的电化学性能。
-
公开(公告)号:CN114940515A
公开(公告)日:2022-08-26
申请号:CN202210676541.0
申请日:2022-06-15
Applicant: 荆门市格林美新材料有限公司
Abstract: 本发明提供了一种铝掺杂的碳酸钴及其制备方法和应用。所述制备方法包括以下步骤:(1)将钴铝混合盐溶液和沉淀剂溶液并流加入反应釜的底液中进行反应,得到启动晶种;(2)得到启动晶种后继续反应,生长颗粒的颗粒粒径达到第一目标粒径前,以澄清法进行反应;(3)达到第一目标粒径后,采用浓密法进行反应,直至生长颗粒的颗粒粒径达到目标粒径,停止进料,得到所述铝掺杂的碳酸钴。本发明在反应前期采用澄清法,使得整个反应系统保持稳定,实现前期铝均匀掺杂,后期采用浓密法,保证了反应颗粒的稳定生长,且实现了铝的均匀分布,且提高了产能,最终得到了铝分布均匀的大粒径碳酸钴材料。
-
公开(公告)号:CN116253369B
公开(公告)日:2025-05-23
申请号:CN202310453807.X
申请日:2023-04-25
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/82 , H01M4/525 , H01M10/0525
Abstract: 本发明提供了一种低硫富锂锰基前驱体及其制备方法和应用,所述制备方法包括以下步骤:(1)将三元盐溶液、第一碱液和络合剂并流注入底液,将溶液通入浓缩容器,第一清液流入清液槽留存,浆料返回到反应容器内进行共沉淀反应;(2)反应10~30h后,单独注入第二碱液进行搅拌,经沉降后抽走第二清液,将清液槽中的清液注入到反应容器中,继续注入三元盐溶液、碱液和络合剂溶液进行共沉淀反应;(3)重复步骤(1)‑(2),粒径达到指标后单独注入第二碱液,搅拌后停止反应,得到所述低硫富锂锰基前驱体,本发明通过简单的方法,在前驱体合成阶段去除材料中的硫酸根,能保证生产的富锂锰基前驱体硫含量
-
公开(公告)号:CN116062801B
公开(公告)日:2025-04-29
申请号:CN202310255919.4
申请日:2023-03-16
Applicant: 荆门市格林美新材料有限公司
IPC: C01G51/06 , C01G51/82 , H01M4/52 , H01M10/0525
Abstract: 本发明提供了一种碳酸钴及其制备方法和用途。所述制备方法包括以下步骤:将第一钴铝混合盐溶液与沉淀剂溶液并流加入底液中进行第一共沉淀反应,达到第一目标粒径后,将第一钴铝混合盐溶液替换为第二钴铝混合盐溶液,与沉淀剂溶液进行第二共沉淀反应,达到第二目标粒径后,将第二钴铝混合盐溶液替换为第三钴铝混合盐溶液,与沉淀剂溶液进行第三共沉淀反应,得到所述碳酸钴;其中,第一钴铝混合盐溶液、第二钴铝混合盐溶液和第三钴铝混合盐溶液中铝的质量浓度依次增加。本发明制备得到了核壳结构的由内至外铝掺杂量依次增加的掺铝碳酸钴,调控了碳酸钴形貌的阶梯分布,有效抑制了掺铝碳酸钴中Al的偏析现象,得到了性能优异的钴酸锂前驱体。
-
公开(公告)号:CN116462239B
公开(公告)日:2025-04-22
申请号:CN202310419294.0
申请日:2023-04-19
Applicant: 荆门市格林美新材料有限公司
IPC: H01M4/505 , C01G53/00 , H01M4/525 , H01M4/485 , H01M10/052 , H01M10/0525 , H01M10/054
Abstract: 本发明提供了一种前驱体材料及其制备方法与应用,所述制备方法包括如下步骤:将金属盐溶液、沉淀剂溶液、络合剂溶液和极性调节剂分别通入底液中,进行共沉淀反应;所述共沉淀反应过程中阶段式调节极性调节剂的流量;所述共沉淀反应结束后,进行陈化和后处理,得到前驱体材料;所述制备方法通过体系极性的控制,实现了反应前原料的分散性能、反应过程的传质过程以及反应后的形貌控制,解决了共沉淀过程中成核分相、产物球形度差、爆发小颗粒以及表面形貌不可控的问题。
-
公开(公告)号:CN116462239A
公开(公告)日:2023-07-21
申请号:CN202310419294.0
申请日:2023-04-19
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/00 , H01M4/525 , H01M4/505 , H01M4/485 , H01M10/052 , H01M10/0525 , H01M10/054
Abstract: 本发明提供了一种前驱体材料及其制备方法与应用,所述制备方法包括如下步骤:将金属盐溶液、沉淀剂溶液、络合剂溶液和极性调节剂分别通入底液中,进行共沉淀反应;所述共沉淀反应过程中阶段式调节极性调节剂的流量;所述共沉淀反应结束后,进行陈化和后处理,得到前驱体材料;所述制备方法通过体系极性的控制,实现了反应前原料的分散性能、反应过程的传质过程以及反应后的形貌控制,解决了共沉淀过程中成核分相、产物球形度差、爆发小颗粒以及表面形貌不可控的问题。
-
公开(公告)号:CN116425214A
公开(公告)日:2023-07-14
申请号:CN202310302949.6
申请日:2023-03-27
Applicant: 荆门市格林美新材料有限公司
IPC: C01G53/00 , H01M10/0525 , H01M4/505 , H01M4/525
Abstract: 本发明提供了一种锆钨双掺杂的镍钴锰氢氧化物及其制备方法和应用。所述制备方法包括以下步骤:将镍钴锰锆混合盐溶液、钨盐溶液、改性剂溶液、沉淀剂溶液和络合剂溶液并流加入进行共沉淀反应,得到所述锆钨双掺杂的镍钴锰氢氧化物。本发明提供的制备方法,制备过程中锆与镍钴锰共同进料,钨盐单独进料,同时加入改性剂,实现了锆钨的均匀掺杂,且前驱体阶段进行了沉淀改性,提高了正极材料的离子导电性和电子导电性,从而大幅度提高了正极材料的倍率性能、比容量和循环稳定性。
-
-
-
-
-
-
-
-
-