-
公开(公告)号:CN111984006B
公开(公告)日:2021-07-06
申请号:CN202010725524.2
申请日:2020-07-24
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于无人艇自动避碰技术领域,具体涉及融合海流及尺度差异影响的无人艇多目标会遇避碰方法。本发明利用船舶自动识别系统的信息交互,通过数据解算,模拟雷达自动标绘功能,解决了无人艇雷达相关功能因外界因素发生信息偏差甚至缺失不能计算避碰参数的问题,并考虑了海流对无人艇和目标船的位置偏移,提出更适合无人艇使用的避碰参数,提高了无人艇在大海中航行的安全性。本发明数据来源稳健且具有实时动态性,为避碰决策提供数据信息支持。
-
公开(公告)号:CN108459602B
公开(公告)日:2021-03-30
申请号:CN201810165108.4
申请日:2018-02-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了多障碍复杂环境下欠驱动无人艇的自主靠泊方法,属于水面无人艇局部动态靠泊规划领域。包括:计算目标泊位的一级引导点,二级引导点;判断无人艇是否到达一级引导点,二级引导点;计算无人艇当前位置与目标泊位间的距离;结合LOS视线法计算当前无人艇的靠泊约束集;计算当前无人艇与周围障碍物的最短碰撞时间;计算当前情况下无人艇的椭圆碰撞锥;利用基于COLREGS的多障碍启发式算法,选择无人艇速度矢量;计算无人艇下一时刻的位置。在传统速度障碍法中加入多级目标引导和靠泊约束集,成功实现多障碍复杂环境下欠驱动无人艇的自主靠泊,充分考虑了无人艇自身动力学、运动学和目标泊位的约束特性,使无人艇在自主靠泊中遵守海事规则。
-
公开(公告)号:CN108267955B
公开(公告)日:2021-03-30
申请号:CN201810044826.6
申请日:2018-01-17
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明公开了面向无人艇自主靠泊的运动控制方法,属于无人艇自主靠泊运动控制领域。步骤为:根据无人艇当前的靠泊状态确定当前控制系统模式;获取当前无人艇的实际速度或航向,获得航向或航速的控制偏差和偏差变化率;将其作为模糊控制器输入,结合当前控制系统模式选择合适的控制参数变化量并更新控制参数;将e(t)作为控制器输入,由控制器输出期望控制指令传递给执行器。本发明在传统PID控制器上进行改进,将控制器分成了两种模式——远端模式和近岸模式,加入自适应模糊控制规则,使其根据靠泊行为改变进行控制参数的动态自适应调整,解决欠驱动无人艇自主靠岸时的弱机动,大扰动以及强岸壁效应等影响下的运动控制难题。
-
公开(公告)号:CN112327872A
公开(公告)日:2021-02-05
申请号:CN202011310019.8
申请日:2020-11-20
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 一种面向溢油围捕的双无人艇协同轨迹跟踪方法,属于多艇协同轨迹跟踪领域。本发明针对现有双无人艇溢油围捕方法中,轨迹跟踪算法复杂度高造成溢油围捕的工作效率低的问题。包括,在当前时间周期通过两艘无人艇上的位姿传感器分别测量双无人艇的当前位置和当前姿态信息;给合当前位置和当前姿态信息以及当前溢油点位置,采用零空间行为融合方法对双无人艇进行行为融合,得到双无人艇的期望航速及航向;控制双无人艇按照所述期望航速及航向运动,达到新位置;然后进入下一个时间周期,时间周期不断迭代,直到完成协同轨迹跟踪;所述零空间行为融合方法中的行为包括相互避碰、保持队形和趋向目标三种行为。本发明用于溢油围捕中的轨迹跟踪。
-
公开(公告)号:CN112214023A
公开(公告)日:2021-01-12
申请号:CN202011096830.0
申请日:2020-10-14
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 考虑波浪推进的自然能驱动无人艇的航线实时优化方法及航行方法,涉及海上航行器的路径规划领域。本发明是为了在自然能驱动无人艇原计划航线的航迹点间根据波浪环境、计划航向进行节点间的航线优化。本发明所述的考虑波浪推进的自然能驱动无人艇的航线实时优化方法及航行方法,依靠艇载传感器感知波浪环境,实时对小范围的航行方法做出指导,实时性动态强,更能满足工程要求。同时这种航线修正方法既保证了无人艇能够到达每个任务节点,又能保证增加节点间的波浪能捕获能力,提升机器人的续航力。
-
公开(公告)号:CN108829102B
公开(公告)日:2021-01-05
申请号:CN201810602138.7
申请日:2018-06-12
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种自适应艏向信息融合的波浪滑翔器航向控制方法,(1)制导模块给出期望航向角;(2)得到修正后的潜体浮体相对于系统艏向角的比例系数的估计值;(3)计算潜体期望艏向角;(4)计算潜体期望艏向与浮体艏向的夹角的绝对值,将其限制在预先设定的阈值内;(5)进行潜体艏向控制,主计算机向舵机发出舵角指令,舵机驱动舵板转动;(6)计算波浪滑翔器实际航向与期望航向误差绝对值,如果小于设定的阈值并保持一定时间,认为波浪滑翔器航向控制系统实际输出稳定收敛到期望输出,跳出循环,否则返回步骤(2)。本发明通过对潜体的艏向控制间接实现波浪滑翔器系统整体航向的控制,达到航向控制的目的,并使得该方法具有较强的自适应性。
-
公开(公告)号:CN112034858A
公开(公告)日:2020-12-04
申请号:CN202010958562.2
申请日:2020-09-14
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于舰船自动控制技术领域,具体涉及一种融合弱观测高阶输出数据的无模型自适应艏向控制方法。本发明在输入准则函数中引入弱观测条件下舰船高阶输出数据,将舰船艏向一阶差分和二阶差分信息作为控制器的负反馈输入,重新设计艏向控制律,加快了MFAC控制器在线辨识、学习和控制过程,解决了无模型自适应控制算法直接应用于舰船艏向这类非自衡系统出现震荡发散现象,提高系统的动态响应性能和控制精度。本发明对传感器的要求不高,弱观测类型的姿态传感器即可满足需求,易于工程实施且控制成本低。
-
公开(公告)号:CN108415423B
公开(公告)日:2020-12-04
申请号:CN201810106099.1
申请日:2018-02-02
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明涉及一种高抗扰自适应路径跟随方法及系统。给定期望路径点,将期望路径点和水中航行装备实时位置信息输入至制导模块,通过高抗扰自适应路径跟随方法解算出期望航向状态ψd;将期望航向状态ψd和通过航向传感器模块获得的并经滤波器模块滤波的水中航行装备实际航向状态信息ψ获得航向状态偏差绝对值e(k),并输入至CFDL_MFAC控制器模块,输出期望指令u(k)至操纵机构模块;操纵机构模块收到并执行期望指令u(k)(如期望舵角)使得水中航行装备不断趋近期望航向ψd。本发明不需要依赖于系统模型,能有效抵御水流干扰,对模型摄动和噪声等不确定影响不敏感,具有很好的鲁棒性和自适应性,能快速驱动无人航行器跟踪上期望路径。
-
-
公开(公告)号:CN111661234A
公开(公告)日:2020-09-15
申请号:CN202010450229.0
申请日:2020-05-25
Applicant: 哈尔滨工程大学
IPC: B63B1/10 , B63H11/02 , B63H11/103 , B63G8/22
Abstract: 一种水中变结构多航态航行器,它涉及一种航行器。本发明为了解决现有的航行器存在水面水下作业能力受限的问题。本发明主艇体上方的流线型上层建筑,上层建筑两侧对称安装副艇体,副艇体下部铰接外连接桥,外连接桥外部边缘安装有锯齿,内部嵌套内连接桥,内连接桥下部安装浮筒组件,副艇体和外连接桥内部设置有展开和伸缩组件,所述主艇体内部设置浮态调节舱,结合展开和伸缩组件可实现中低海况高速航行、高海况低速稳定航行和极端恶劣海况半潜隐蔽航行三种航行状态的切换。本发明同时具备小水线面双体船的高速性、三体船高耐波性和半潜艇隐蔽性,可根据外界环境自动进行航态调节,并搭载丰富的水面、水下传感器设备,可广泛应用于海洋科研领域。
-
-
-
-
-
-
-
-
-