-
公开(公告)号:CN112562702B
公开(公告)日:2022-12-13
申请号:CN202011374653.8
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/003 , G10L25/18 , G10L25/24
Abstract: 本发明提供一种基于循环帧序列的门控循环单元网络的语音超分辨率方法,包括如下步骤:(1)对原始语音信号进行预处理;(2)提出构建CFS‑GRU模型;(3)完成基于循环帧序列网络的语音超分辨率。本发明基于GRU搭建的循环结构模型,直接将语音信号序列作为输入,很大程度上减小了计算代价,并且相比于传统方法有着较好的超分辨率效果;相比于LSTM,GRU模型有着较少的模型参数,通过GRU搭建的CFS‑GRU模型能够更快的训练和收敛。使用SegSNRLoss作为损失函数训练的CFS‑GRU模型能够更快的收敛,并且能够使输出帧序列有着较高的信噪比,提高超分辨率语音信号的质量。
-
公开(公告)号:CN109871902B
公开(公告)日:2022-12-13
申请号:CN201910177075.X
申请日:2019-03-08
Applicant: 哈尔滨工程大学
IPC: G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明属于雷达数据处理领域,具体涉及一种基于超分辨率对抗生成级联网络的SAR小样本识别方法。针对SAR目标图像分辨率低所导致的目标特征不明显,受环境影响较大,数据样本易混淆的问题,提出一个基于深度学习的超分辨率网络,对低分辨率的SAR的小样本图像进行放大。让分类网络能够提取到更多的特征。与传统超分辨率方法不同,利用GAN进行的图像超分辨率能够有效的提取到图像的特征,生成非过度平滑的逼真的高分辨率图像。针对SAR小样本图像具有的低分辨率,特征模糊,样本容易混淆的特点,针对SAR图像固有特点的GAN超分辨率模型。将实现一个4倍放大因子的超分模型,可以将原图像的像素数量放大到原来的16倍。这样可以提供给分类器更多的内容和特征。
-
公开(公告)号:CN113269691B
公开(公告)日:2022-10-21
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06T5/00 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN109934282B
公开(公告)日:2022-05-31
申请号:CN201910176375.6
申请日:2019-03-08
Applicant: 哈尔滨工程大学
Abstract: 本发明属于合成孔径雷达小样本目标识别领域,具体涉及一种基于SAGAN样本扩充和辅助信息的SAR目标分类方法。本研究根据SAR的数据样本图像的特性,对Inception结构进行优化和改进,并添加适当的正则化条件,联合上述的GAN小样本生成和GAN小样本超分辨率的成果,对SAR小样本目标进行精确的识别。本发明提出了一种更适用于SAR遥感图像的网络,使得其能够学习不同种类目标区域的特征,从而生成新的较为逼真的目标区域图像,解决了SAR小样本的数据量少的问题。解决了针对合成孔径雷达SAR遥感图像中的目标区域,一种基于自注意力生成对抗网络样本扩充和辅助信息的SAR目标分类方法,本发明主要涉及生成式对抗网络来扩充SAR新样本数据,并基于Restnet50结构网络用以SAR小样本目标识别。
-
公开(公告)号:CN112562707A
公开(公告)日:2021-03-26
申请号:CN202011376572.1
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/02 , G10L21/0208
Abstract: 本发明提供一种单信道目标语音增强方法,包括如下步骤:步骤一:语音信号的预处理与特征转换,引入时间潜在域信息,将时序波形信息通过深度学习框架拓展映射到对应潜在空间域的过程及其逆向变换;步骤二:基于生成信号权重的目标函数;步骤三:引入时序TCN网络模型;本发明网络能实现从混合源语音到目标语音信号的端到端处理,网络的增强性能优秀,能良好还原目标语音信号,同时提升了数据处理的并行处理能力,并能通过自身的数据增广丰富样本集,提升模型性能。
-
公开(公告)号:CN112562706A
公开(公告)日:2021-03-26
申请号:CN202011376556.2
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/02 , G10L21/0208 , G10L25/03
Abstract: 本发明提供一种基于时间潜在域特定说话人信息的目标语音提取方法,包括时间潜在域特征转换模型、目标说话人特征信息指导器与增强提取模块;待处理的复杂声学环境语音信息经过时间潜在域特征转换模型的处理将映射到潜在空间的特征矩阵,此特征矩阵将分别进入目标说话人特征信息指导器与增强提取模块;在目标说话人特征信息指导器中,特征矩阵将被判定为与某一特定的目标说话人潜在特征具有相关性,或者不包含目标说话人特征。本发明能实现从复杂声学环境语音信号到特定目标语音信号的端到端处理,能高效提取出针对特定任务的目标说话人信息,而不受其他干扰信号的影响,保障了模型传递给后续任务的特定目标语音信号具备极高的语音质量与可感知性。
-
公开(公告)号:CN110060699A
公开(公告)日:2019-07-26
申请号:CN201910421602.7
申请日:2019-05-21
Applicant: 哈尔滨工程大学
IPC: G10L21/0272 , G10L21/0208
Abstract: 本发明提供的是一种基于深度稀疏展开的单信道语音分离方法。步骤一、将输入的混沌、纯净语音进行信号预处理,进行特征的提取;步骤二、结合稀疏NMF和深度展开对单信道语音语音分离问题进行模型建立;步骤三、将建立好的模型与提取的特征进行模型训练,得到基本系数;步骤四、再次输入混沌、纯净语音信号数据进行测试,经过傅里叶逆变换后,最终得到纯净语音。该方法将稀疏非负矩阵分离与深度展开方法相结合,对语音分离具有一定效果。
-
-
-
-
-
-