一种基于运行大数据的电动汽车动力电池实时安全预警方法

    公开(公告)号:CN115469226A

    公开(公告)日:2022-12-13

    申请号:CN202210913103.1

    申请日:2022-08-01

    Abstract: 本发明公开了一种基于运行大数据的电动汽车动力电池实时安全预警方法,包括以下步骤:S1、数据读取,读取动力电池过往历史数据的总电流、总SOC、以及单体电压;S2、数据清洗,针对缺失数据、重复值数据、错误数据进行清洗;S3、数据分析,提取不同充电时刻的电压值,建立OCV‑SOC曲线;S4、参数辨识,通过拟合得到的OCV‑SOC曲线,对实时采集数据利用Rint模型进行参数辨识,得到充电段的直流内阻和放电段的直流内阻;S5、安全预警,对充电片段内阻和放电片段内阻进行预警。本发明的有益效果在于:基于内阻信息提出的时间空间双维度安全预警方法即能有效诊断出发生故障的具体时间,还能诊断出现故障的具体电池单体,有效的实现电池系统安全精确预警。

    基于神经网络的并联电池组安全预警方法

    公开(公告)号:CN114924192A

    公开(公告)日:2022-08-19

    申请号:CN202210556458.X

    申请日:2022-05-20

    Abstract: 本发明具体涉及基于神经网络的并联电池组安全预警方法,包括:构建支路电流预测模型,包括具有稀疏概率多头自注意力层的编码器和解码器;稀疏概率多头自注意力层具有自注意力蒸馏机制;编码器和解码器的输入相互独立,且编码器的输出连接至解码器中;采集并联电池组的实测数据,构建支路电流预测模型的训练数据集;通过训练数据集训练支路电流预测模型;将待测并联电池组的电池组特征数据输入经过训练的支路电流预测模型中,输出两条支路的预测电流,基于两条支路的预测电流判断并联电池组是否存在安全风险。本发明能够在面对大量训练数据时提高预测模型的训练效率和预测准确性,从而能够提高并联电池组的安全预警效果。

    一种基于机器学习的动力电池并联支路电流估计和矫正方法

    公开(公告)号:CN114740365A

    公开(公告)日:2022-07-12

    申请号:CN202210422955.0

    申请日:2022-04-21

    Abstract: 本发明公开了一种基于机器学习的动力电池并联支路电流估计和矫正方法,获取动态工况下的并联电池组的干路电路I,两条支路电流I1,I2以及支路电压V;利用安时积分法得到荷电状态SOCI;通过第一个BP神经网络对并联电池组支路电流进行估计,得到并联电池组支路电流估计值和除目标工况外其余动态工况估计误差EOB1和EOB2;通过第二个BP神经网络得到目标工况下两条支路电流估计值的误差和将目标工况下的支路电流估计值减去估计误差即可得到矫正后的支路电流估计值。本发明的有益效果在于:本发明首次提出对估计误差进行训练学些,形成双神经网络模型进行估计及矫正,大幅降低复杂工况下的电流估计误差。

    一种并联电池组支路电流、荷电状态和功率状态的联合估计方法

    公开(公告)号:CN114740357A

    公开(公告)日:2022-07-12

    申请号:CN202210278251.0

    申请日:2022-03-21

    Abstract: 本发明公开了一种并联电池组支路电流、荷电状态和功率状态的联合估计方法,该方法先获取并联电池组的支路电流,建立电池的等效电路模型,同时,将估计出的支路电流和端电压作为输入,利用带遗忘因子的递推最小二乘法辨识模型参数,在扩展卡尔曼滤波中加入可随残差变化的自适应遗忘因子来估计荷电状态,并进行荷电状态和端电压约束下的功率状态估计。本发明考虑到了锂离子电池单体间不一致性对支路电流的影响,可随残差变化的自适应遗忘因子也提高了扩展卡尔曼滤波的对不同环境的适应性,从而提高了支路电流、荷电状态和功率状态估计精度。

    一种动力电池开路电压模型融合方法

    公开(公告)号:CN112114254B

    公开(公告)日:2022-02-08

    申请号:CN202010864946.8

    申请日:2020-08-25

    Abstract: 本发明提供一种锂离子动力电池开路电压模型融合方法,包括以下步骤:通过OCV实验获得电池全SOC区间的开路电压(OCV)‑荷电状态(SOC)实验曲线;以一定等SOC间隔选取实验曲线上的(SOC,OCV)数据点,通过合理选取不同OCV模型,将选取的数据点代入各OCV模型得到相应OCV‑SOC拟合曲线;在数据点所划分出的每个SOC间隔内,分别计算各OCV‑SOC拟合曲线与实验曲线之间的均方根误差,并据此为各SOC区间中每个OCV函数模型分配不同的权值,经加权融合后,最终获得整个SOC区间的OCV模型。该模型在全SOC区间均能获得高的拟合精度,具有很好的适应性,不再局限于现有技术中单一OCV模型只能在某一特定区间内具有较高的拟合精度,而牺牲其他区间的精确性的缺点。

    一种动力电池开路电压模型融合方法

    公开(公告)号:CN112114254A

    公开(公告)日:2020-12-22

    申请号:CN202010864946.8

    申请日:2020-08-25

    Abstract: 本发明提供一种锂离子动力电池开路电压模型融合方法,包括以下步骤:通过OCV实验获得电池全SOC区间的开路电压(OCV)‑荷电状态(SOC)实验曲线;以一定等SOC间隔选取实验曲线上的(SOC,OCV)数据点,通过合理选取不同OCV模型,将选取的数据点代入各OCV模型得到相应OCV‑SOC拟合曲线;在数据点所划分出的每个SOC间隔内,分别计算各OCV‑SOC拟合曲线与实验曲线之间的均方根误差,并据此为各SOC区间中每个OCV函数模型分配不同的权值,经加权融合后,最终获得整个SOC区间的OCV模型。该模型在全SOC区间均能获得高的拟合精度,具有很好的适应性,不再局限于现有技术中单一OCV模型只能在某一特定区间内具有较高的拟合精度,而牺牲其他区间的精确性的缺点。

    一种锂离子电池组电化学模型参数获取方法

    公开(公告)号:CN112083336A

    公开(公告)日:2020-12-15

    申请号:CN202011117166.3

    申请日:2020-10-19

    Abstract: 本发明提供了一种锂离子电池组电化学模型参数获取方法,其基于激励响应分析对不同个体电池在辨识工况下放电末端的电压曲线进行对比分析,估算出辨识工况下各单体电池所对应的放电容量,提取辨识工况中的搁置末端的端电压,从而辨识出不同单体电池的电化学模型基本工作过程相关参数,进而实施其他参数的获取,实现了电化学模型在电池组上的应用,同时为简化电化学模型在电池管理系统中的应用如荷电状态估计、健康状态评估等提供了技术支持。

Patent Agency Ranking