-
公开(公告)号:CN118539007A
公开(公告)日:2024-08-23
申请号:CN202410742584.3
申请日:2024-06-11
Applicant: 吉林大学
IPC: H01M10/058 , H01M4/133 , H01M10/0525
Abstract: 本发明的一种改性双离子电池的制备方法属于双离子电池制备技术领域。利用超声波作用环境中,超硬纳米金刚石使石墨层剥离并形成寡层卷曲石墨烯,作为双离子电池正极或负极,提升阴阳离子的储存能力。应用表面氟化纳米金刚石作为电解液添加剂,在石墨电极表面形成均匀致密的固态电解质界面,提升电池的长循环稳定性和离子传输效率。将纳米金刚石同时应用于双离子电池电极和电解液的修饰,组装的双碳全电池容量和长循环性能均显著提升。本发明的双离子电池利用金刚石对组件结构的改性和对阴阳离子的强吸附性,提高双离子电池容量,具有良好的成本效益和工业前景。
-
公开(公告)号:CN118522871A
公开(公告)日:2024-08-20
申请号:CN202410466616.1
申请日:2024-04-18
Applicant: 吉林大学
IPC: H01M4/36 , C01B32/348 , C01B32/05 , C01B32/28 , B82Y30/00 , H01M4/587 , H01M4/04 , H01M4/133 , H01M4/1393 , H01M10/0525 , H01M4/62
Abstract: 本发明提出了一种多孔中空碳微球/纳米金刚石锂离子电池负极材料及其制备方法,属于锂离子电池负极材料技术领域,本发明以生物质皂角皮为碳源,添加纳米金刚石水热处理和氢氧化钾活化的方法,合成了多孔中空碳微球复合纳米金刚石(PHCS‑ND)。当PHCS‑ND应用于锂离子电池的负极时,展示了良好的循环稳定性。在2C的电流密度下,经过1500次循环后,比容量可以达到700~800mA h g‑1,在5C电流密度下,经过6000次循环后,比容量可达到350~450mA h g‑1,即使在20C电流密度下,经过13000次循环后,比容量仍可达到100~120mA h g‑1,具有长循环稳定性和高容量性能。本发明所采用的制备方法具有过程简单、易于实现、容易放大等优点,有望未来大规模生产。
-
公开(公告)号:CN117721530A
公开(公告)日:2024-03-19
申请号:CN202311034762.9
申请日:2023-08-16
Applicant: 宜宾吉林大学研究院
Abstract: 本发明的一种金刚石SiV色心规则阵列结构的制作方法属于量子材料技术领域,结合电子束光刻技术在金刚石衬底表面形成纳米尺度的图形化二氧化硅/铱掩膜,对二氧化硅掩模层的厚度进行调整,控制硅离子渗透的位置和深度,并通过控制二次生长的条件及生长时间调控具有空位中心的外延层厚度,从而调控探测精度。本发明通过提出的金刚石硅色心规则阵列制备方法,采用二氧化硅/铱混合掩膜结构,通过控制镀膜厚度,对掺杂深度满足设定的需求,制备了具有规则阵列的金刚石SiV色心结构。
-
公开(公告)号:CN114045555B
公开(公告)日:2023-10-20
申请号:CN202111330072.9
申请日:2021-11-11
Applicant: 吉林大学
Abstract: 本发明的一种超疏水氧终端多晶硼掺杂金刚石膜的制备方法属于多晶金刚石膜制备的技术领域,步骤包括沉积硼掺杂多晶金刚石薄膜、沉积Au和Cu薄膜、管式炉中高温刻蚀等。本发明首次实现氧终端金刚石膜具有超疏水性,且制备过程以一种简便、易操作、成本较低的方式,本研究将在开发坚硬的超疏水材料领域中具有重要意义。
-
公开(公告)号:CN116864781A
公开(公告)日:2023-10-10
申请号:CN202311023107.3
申请日:2023-08-15
Applicant: 吉林大学
IPC: H01M10/052 , H01M10/054 , H01M10/0563 , H01M4/58 , H01M4/587 , H01M10/058 , B82Y30/00 , B82Y40/00
Abstract: 本发明的锂‑钠混合离子电池及其制备方法,属于离子电池的正极、负极、隔膜和电解液设计与改性技术领域。半电池采用锂‑钠合金对电极,全电池采用以三维多孔Li1.5Na1.5V2(PO4)3‑C为活性材料铝箔为集流体的锂‑钠混合盐正极;负极是以商用石墨为负极极活性材料铜箔为集流体制得;电解液采用主要成分是NaPF6和LiPF6的锂‑钠混合基电解液。隔膜和电解液还可以用纳米金刚石粉进行修饰以提高电池的性能。本发明的锂‑钠混合离子电池实现了锂‑钠离子在同一电池中共存储的概念,具有良好的电化学性能,制备与现有的LIBs生产线兼容,具有成本效益和工业前景。
-
公开(公告)号:CN113125536B
公开(公告)日:2023-06-27
申请号:CN202110345262.1
申请日:2021-03-31
Applicant: 吉林大学
Abstract: 本发明的一种用于检测苯胺的电化学传感器电极材料的制备方法属于电化学传感器的技术领域,具体步骤为:以P型掺杂单晶硅片为衬底,通过手动研磨法或超声震荡法,利用微米金刚石粉对硅片表面进行处理,并利用酒精清洗,然后利用微波等离子体化学气相沉积方法沉积硼、氮共掺杂金刚石薄膜,得到用于检测苯胺的电化学传感器电极材料。本申请制备的电极材料具有良好的电化学性能,以其为工作电极对苯胺进行电化学检测,实现了极高的检测灵敏度,同时检测范围大,重复性好。
-
公开(公告)号:CN110071276A
公开(公告)日:2019-07-30
申请号:CN201910341371.9
申请日:2019-04-26
Applicant: 吉林大学
IPC: H01M4/36 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明的纳米金刚石与SiOx复合电极材料及制备方法属于锂离子电池负极材料的技术领域。其特征在于,由纳米金刚石支撑碳层与SiOx,制备方法为:将柠檬酸、尿素溶于去离子水中,形成无色透明溶液,加入纳米金刚石和SiOx;超声处理60分钟后,将溶液置于微波炉中,并以850W的功率加热10分钟;将得到的固体复合物在惰性气体气氛下900℃干燥碳化2小时。本发明制备的样品具有较高的锂离子的存储密度与传输速率,用其制作的锂电池具有很好的比容量与保持率。
-
公开(公告)号:CN109142313A
公开(公告)日:2019-01-04
申请号:CN201810875520.5
申请日:2018-08-03
Applicant: 吉林大学
CPC classification number: G01N21/658 , C23C16/27 , C23C16/271 , C23C16/274 , C23C16/276
Abstract: 本发明的半导体表面增强拉曼散射的金刚石基底及其制备方法,属于拉曼散射信号增强的技术领域。金刚石基底的结构在硅片或金刚石的衬底表面生长有掺杂硼、氮、硫、磷、硫氮或磷氮等的金刚石膜。采用化学气相沉积方法在衬底上沉积掺杂金刚石膜;制得的掺杂金刚石膜还可以进行表面功能化处理,获得表面氢终止或氧终止的掺杂金刚石膜,以提高增强因子。本发明首次以金刚石材料作为一种新的半导体SERS基底,具有高灵敏度、稳定性、可重复性、以及具有良好生物兼容性;增强因子可达到102‑105,并可用于多种不同的探针分子检测。
-
公开(公告)号:CN105895945B
公开(公告)日:2018-11-09
申请号:CN201610439308.5
申请日:2016-06-20
Applicant: 吉林大学
IPC: H01M8/126
Abstract: 本发明的掺纳米金刚石粉的氧化钐掺杂氧化铈电解质及其制备方法,属于新能源‑固体氧化物燃料电池的技术领域。电解质的组分是Sm2O3、CeO2、Ce2O3和纳米金刚石粉,纳米金刚石粉占Sm2O3、CeO2和Ce2O3质量和的1%~2%。采用甘氨酸‑硝酸盐法加入纳米金刚石粉合成掺纳米金刚石粉的氧化钐掺杂氧化铈电解质粉体,再用干压法制成电解质片1400℃下烧结。本发明通过在氧化钐掺杂氧化铈电解质材料中掺杂纳米金刚石粉,从而使晶粒尺寸增大,同时增加铈离子Ce3+的含量比例,两者共同促进氧空穴浓度增加,导致增大离子迁移率,从而导致单电池功率的增大。
-
公开(公告)号:CN105568220B
公开(公告)日:2018-01-02
申请号:CN201610027359.7
申请日:2016-01-15
Applicant: 吉林大学
Abstract: 本发明的一种磁控溅射制备立方氮化硼厚膜的方法,属于超硬材料及其制备的技术领域。以硅片为衬底,以h‑BN或单质硼靶为溅射靶材,采用两步沉积法制备c‑BN厚膜。在Ar/N2混合气体气氛下先溅射第一层氮化硼膜,再通入H2,按质量流量计H2用量为气体总流量的4%~15%,保持衬底温度、调节衬底负偏压溅射第二层氮化硼膜。本发明的方法在不使用过渡层、加H2量较少的条件下,直接在硅衬底上获得立方相含量75%以上,甚至超过95%的c‑BN厚膜,膜厚可达4μm以上,其稳定性得到了显著提高。
-
-
-
-
-
-
-
-
-