一种动静正则混合采样的行人再辨识方法及系统

    公开(公告)号:CN119323805A

    公开(公告)日:2025-01-17

    申请号:CN202411876774.0

    申请日:2024-12-19

    Applicant: 华侨大学

    Abstract: 本发明公开了一种动静正则混合采样的行人再辨识方法及系统,涉及公共安全智能视频监控技术领域。实践中,采样常独立于行人再辨识模型训练,导致训练过程采样的信息丢失不受控制,制约识辨准确性。为此,本发明设计了正则动态线性采样和静态线性采样混和方法,实现行人再辨识模型训练过程中联合优化采样效果,其中,前者通过归一化的可学习参数,以数据驱动的动态方式学得动态的像素组合权重;后者利用双线性变换来确定静态的像素组合权重,实现与数据无关的采样策略。本发明进一步设计了动静正则项,约束动态的像素组合权重与静态的像素组合权重之间的差异,控制可学习参数的自由度,更好地组合动静采样,减少传统单一静态采样过程中信息损失。

    基于全局特征与头肩特征多核融合的行人识别方法及装置

    公开(公告)号:CN118397659A

    公开(公告)日:2024-07-26

    申请号:CN202410828405.8

    申请日:2024-06-25

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。

    一种基于场景迁移的行人性别识别方法

    公开(公告)号:CN111126310B

    公开(公告)日:2023-03-24

    申请号:CN201911367254.6

    申请日:2019-12-26

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于场景迁移的行人性别识别方法,包括场景迁移过程与性别识别过程。本发明通过对偶生成对抗模型对来自不同场景的行人图像集进行图像迁移,减小不同数据集中行人场景的差异。利用迁移图像训练卷积神经网络,使网络模型具有较高精度的性别识别能力。本发明结合了对偶生成对抗模型用于图像迁移的优点,解决了以往基于卷积神经网络在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,大型商场的人口统计等。

    一种基于多深度特征融合网络的车辆再识别方法

    公开(公告)号:CN108875754B

    公开(公告)日:2022-04-05

    申请号:CN201810426492.9

    申请日:2018-05-07

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多深度特征融合的车辆再识别方法,包括:提取训练车辆图像的深度ID特征,提取训练车辆图像的深度颜色特征,提取训练车辆图像的深度车型特征,将提取的三种深度特征进行组合,获得融合特征,通过Softmax分类函数对融合后的深度特征进行分类。本发明对输入的车辆图像提取深度ID特征、深度颜色特征和深度车型特征并进行有效地融合,实现三种深度特征的互补,获得更有表征能力的融合特征,从而实现准确的车辆再识别。

    一种基于场景迁移的行人性别识别方法

    公开(公告)号:CN111126310A

    公开(公告)日:2020-05-08

    申请号:CN201911367254.6

    申请日:2019-12-26

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于场景迁移的行人性别识别方法,包括场景迁移过程与性别识别过程。本发明通过对偶生成对抗模型对来自不同场景的行人图像集进行图像迁移,减小不同数据集中行人场景的差异。利用迁移图像训练卷积神经网络,使网络模型具有较高精度的性别识别能力。本发明结合了对偶生成对抗模型用于图像迁移的优点,解决了以往基于卷积神经网络在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,大型商场的人口统计等。

    基于多尺度八叉树注意力机制的点云压缩方法及装置

    公开(公告)号:CN120075476A

    公开(公告)日:2025-05-30

    申请号:CN202510541659.6

    申请日:2025-04-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多尺度八叉树注意力机制的点云压缩方法及装置,涉及图像处理领域,包括:编码器网络接收点云数据,利用降尺度特征提取器对点云进行下采样和特征提取,获得降尺度的深层特征点云,通过递归方式将其编码为八叉树,并根据八叉树节点之间的关系构建上下文窗口,引入多头注意力机制对八叉树节点进行特征融合,得到八叉树节点的占用概率,再使用算术编码将其压缩为比特流;解码器网络通过对比特流进行解压缩,获得重建后的点云,利用升尺度特征重建器对其进行上采样和特征重建,最终获得与初始点云相同分辨率的重建点云。本发明能够在保证相同点云质量的前提下,有效提高点云压缩的效率,减少比特开销。

    基于深浅层时空特征的屏幕内容视频质量评价方法及装置

    公开(公告)号:CN120031869A

    公开(公告)日:2025-05-23

    申请号:CN202510495985.8

    申请日:2025-04-21

    Applicant: 华侨大学

    Abstract: 本发明公开了基于深浅层时空特征的屏幕内容视频质量评价方法及装置,涉及视频评价领域,方法包括:获取屏幕内容视频并从中提取视频块和关键帧,构建包含空间特征提取支路、时间特征提取支路、空域时域融合模块和质量回归模块的双支路屏幕内容视频质量评价模型;通过将关键帧输入空间特征提取支路获得空间特征,视频块输入时间特征提取支路获得时间特征,两者拼接后经由空域时域融合模块整合,最终通过质量回归模块输出视频质量分数。本发明通过构建并训练包含空间和时间特征提取支路的双支路屏幕内容视频质量评价模型,实现了对屏幕内容视频质量的有效评估。

Patent Agency Ranking