一种基于身份和非身份属性交互学习的行人属性识别方法

    公开(公告)号:CN110516569A

    公开(公告)日:2019-11-29

    申请号:CN201910753998.5

    申请日:2019-08-15

    Abstract: 本发明提供一种基于身份和非身份属性交互学习的行人属性识别方法。首先,采用一种具有视角变化鲁棒性的特征学习方法对行人图像进行特征表达;其次,将行人属性分为身份属性和非身份属性,对二者之间的潜在关系进行建模,设计出行人身份属性和非身份属性交互学习的目标函数,利用身份属性的识别优势促进非身份属性识别率的提高,并且利用非身份属性识别率的提高反过来进一步改进身份属性的识别效果。行人属性分为身份属性和非身份属性的潜在关系为:相同身份的行人之间,必然具有相同的非身份属性;非身份属性差异大的行人之间,其身份属性差异一般较大。最后,采用mini-batch随机梯度下降算法对目标函数进行优化,实现行人属性的识别。

    一种基于四点二元模型的图像纹理特征值的提取方法

    公开(公告)号:CN103366187A

    公开(公告)日:2013-10-23

    申请号:CN201310279042.9

    申请日:2013-07-04

    Applicant: 华侨大学

    Abstract: 本发明提出一种基于四点二元模型的图像纹理特征值的提取方法,首先计算2x2像素块内四个像素点像素值的均值;其次计算每个像素点与均值的差值,若差值大于等于一给定阈值,就置该像素块的位置编码值为1,否则为0;最后将四个像素块的位置编码值乘以相对应的权重后,再将4个乘积求和,就得到该2x2像素块的纹理特征值,本发明只需要计算四个像素点与其均值的差值,得到4bit的二进制码,计算量减少一半且复杂度低,且能有效地表示人脸的局部纹理信息,可应用于人脸检测、识别和目标跟踪系统。

    基于三维人脸几何结构的无参考质量评估方法及装置

    公开(公告)号:CN119741304B

    公开(公告)日:2025-05-06

    申请号:CN202510262624.9

    申请日:2025-03-06

    Abstract: 本发明公开了一种基于三维人脸几何结构的无参考质量评估方法及装置,涉及计算机视觉领域,方法包括:三维人脸网格模型重建;计算映射关键点和提取关键点之间的欧几里得距离,获得几何一致性分数;用三维人脸分割算法划分人脸区域,计算高斯曲率得到区域曲率分数;计算模型表面的平滑度,检测模型表面是否存在不自然的突起或瑕疵,获得平滑度分数;将几何一致性分数、区域曲率分数和平滑度分数按照加权比例进行融合,输出三维人脸网格模型的综合质量分数。本发明无需依赖数据库中的标准人脸模型,能够基于人脸几何特征和区域性分析对单个重建的三维人脸网格模型质量进行全面评估,适用于智能美容、精准医疗等个性化重建场景。

    基于频域融合的大面积缺损视频修复方法及装置

    公开(公告)号:CN119863405A

    公开(公告)日:2025-04-22

    申请号:CN202510341442.0

    申请日:2025-03-21

    Applicant: 华侨大学

    Abstract: 本发明一种基于频域融合的大面积缺损视频修复方法及装置,涉及视频处理技术领域,针对现阶段缺损视频修复方法主要局限于小面积缺损场景,对大面积缺损的视频内容修复能力不足,难以生成合理的视觉修复结果的问题,提出了一种有效的解决方法,方法包括以下步骤:首先,获取缺损的视频帧序列,对视频帧序列进行下采样;接着,使用堆叠的频域融合残差块对下采样后的缺损视频帧进行全局信息建模,频域融合残差块由两个自适应频域交叉融合模块依次连接而成;然后,利用堆叠的时间Transformer模块优化多帧之间的时间一致性;最后,进行上采样以重建视频帧,得到最终修复的视频。本发明能够在大范围缺损区域中生成视觉上合理、内容流畅自然的视频修复效果。

Patent Agency Ranking