-
公开(公告)号:CN114410994A
公开(公告)日:2022-04-29
申请号:CN202111658192.1
申请日:2021-12-30
Applicant: 北京科技大学
IPC: C22C1/02 , C22C19/03 , C04B35/44 , C04B35/443 , C04B35/66
Abstract: 本发明提供了一种基于CaO‑MgO‑Al2O3耐火材料熔炼镍基高温合金的方法,其步骤包括:将CaO‑MgO‑Al2O3耐火材料坩埚置于感应熔炼设备中,将镍基高温合金原料放入所述CaO‑MgO‑Al2O3耐火材料坩埚中在感应熔炼设备中熔炼得到镍基高温合金。本发明提供的基于CaO‑MgO‑Al2O3耐火材料熔炼镍基高温合金的方法,能够有效防止镍基高温合金熔体的氧化污染,熔炼出高冶金质量的镍基高温合金。
-
公开(公告)号:CN114171673A
公开(公告)日:2022-03-11
申请号:CN202111269516.2
申请日:2021-10-29
Applicant: 北京科技大学
IPC: H01L41/22 , H01L41/253 , H01L41/23 , H01L41/25
Abstract: 本发明提供了一种基于N掺杂的SiC纳米结构阵列构建的具有全天候服役能力的压电纳米发电机的制备方法,属于无机非金属材料科学与能源材料技术领域,其步骤包括:制备N掺杂的碳化硅,制备自支撑的碳化硅纳米结构阵列薄膜,对碳化硅纳米结构阵列薄膜性能优化,及构筑具有全天候服役能力的压电纳米发电机等过程。本发明提供的基于N掺杂的SiC纳米结构阵列构建的具有全天候服役能力的压电纳米发电机的制备方法,制得的压电纳米发电机受到沿厚度方向的外力时,在宏观上表现出显著的电信号输出。并且,制得的压电纳米发电机在‑80℃~80℃的温度和0‑100%的相对湿度条件下工作300‑500天仍然能够保持稳定输出。
-
公开(公告)号:CN113666749A
公开(公告)日:2021-11-19
申请号:CN202110835552.4
申请日:2021-07-23
Applicant: 北京科技大学
IPC: C04B35/56 , C04B35/622
Abstract: 本发明提供了一种大尺寸Al4SiC4的工业化制备方法,步骤包括:以质量百分比计,将22%‑40%的碳化硅和60%‑78%的碳化铝混合,加入无水乙醇,球磨2‑6h得混合料;将混合料经烘干与筛分后,将筛分得到的筛分粉料压块得压制粉料块;将压制粉料块置于石墨坩埚感应烧结炉中,在真空状态下升温至1500‑2000℃;在石墨坩埚感应烧结炉中充入保护气体,保温0.5‑12h制得大尺寸Al4SiC4。本发明提供的一种大尺寸Al4SiC4的工业化制备方法,工艺简单、生产条件低,且生产量高。
-
公开(公告)号:CN113652561A
公开(公告)日:2021-11-16
申请号:CN202110760057.1
申请日:2021-07-06
Abstract: 本发明公开了一种含锆非晶合金的坩埚式感应熔炼制备方法及坩埚式感应熔炼装置,本发明利用BaZrO3耐火材料坩埚为容器,在惰性气体保护下,将配比的非晶合金原料进行真空感应熔炼制备。本发明所提供的锆基非晶合金制备方法能通过控制初始合金原料的氧含量、真空条件、以及加热熔融时间以显著降低锆基非晶合金的含氧量;也简化了非晶合金的制备流程,均匀的热场可有效消除非晶合金成分偏析现象;同时坩埚式感应熔炼降低能耗、减少污染,符合绿色冶金的要求。
-
公开(公告)号:CN109180205B
公开(公告)日:2021-01-26
申请号:CN201811171801.9
申请日:2018-10-09
Applicant: 北京科技大学
IPC: C04B35/66
Abstract: 本发明提供了一种铬铁矿耐火材料,包括45‑65wt%的基质材料,20‑30wt%的中颗粒骨料,15‑25wt%的大颗粒骨料,以及结合剂;所述基质材料包括70‑90wt%工业铬铁矿细粉,1‑5wt%的熔融氧化镁粉,9‑25wt%的α‑氧化铝粉,以及所述工业铬铁矿细粉,熔融氧化镁粉和α‑氧化铝粉总质量0.05‑2.5wt%的分散剂;所述中颗粒骨料是粒度为1‑3mm的工业铬铁矿颗粒,所述大颗粒骨料是粒度为3‑5mm的工业铬铁矿颗粒。本发明还提供了一种铬铁矿耐火材料的制备方法。本发明制得的铬铁矿耐火材料,不仅微观结构相对致密,烧结过程结构稳定,而且耐渣侵蚀性能优异。
-
公开(公告)号:CN111908929A
公开(公告)日:2020-11-10
申请号:CN202010578051.8
申请日:2020-06-23
Applicant: 北京科技大学
IPC: C04B35/66
Abstract: 本发明公开了基于氮离子(N3-)掺杂制备抗渣性能优异的六铝酸钙(CA6)基耐火原料的方法,其方法包括:将氧化铝粉和氧化钙粉高温热处理去除表面吸附水、结合水;将金属铝粉、氧化铝粉和氧化钙粉放入高能球磨机中球磨,获得混合粉末;将所述混合粉末破碎筛分后,经机压成型获得生坯;将所述生坯放入高温气氛炉中,在N2气氛下,对所述生坯进行埋碳烧结,获得N3-离子掺杂的CA6材料。本发明通过引入N3-离子调整CA6的晶体结构,可以在不破坏CA6晶型的基础上,提高CA6晶胞c轴的长度,能使其材料厚度相比更厚,致密度大大提升并且抗渣侵蚀性能优异。同时,在制备N3-离子掺杂的CA6耐火原料的过程中,确定了掺N发生位点。
-
公开(公告)号:CN111272574A
公开(公告)日:2020-06-12
申请号:CN202010092612.3
申请日:2020-02-14
Applicant: 北京科技大学
Abstract: 本发明公开了一种原位测试耐火材料在应力作用下反应行为的装置及方法,其中,装置包括:应力加载系统,用于夹持试样,并在测试所述试样的反应行为时对所述试样提供压应力加载;风冷热震系统,用于在测试所述试样的反应行为时对所述试样提供热应力;加热系统,用于在测试所述试样的反应行为时对所述试样进行加热;气氛控制系统,用于在测试所述试样的反应行为时为所述试样提供真空或不同气氛的测试环境;检测系统,用于对所述试样的反应行为进行实时原位检测。本发明能够实现对试样在反应过程中的温度场、气氛场和应力场的协同调控,进而在更加贴近实际服役环境的条件下对耐火材料的高温反应行为进行原位测试。
-
公开(公告)号:CN108318555B
公开(公告)日:2019-11-12
申请号:CN201711408759.3
申请日:2017-12-22
Applicant: 北京科技大学
Abstract: 本发明涉及一种氮化硼、氮化硼修饰玻碳电极及其制备方法和应用。所述氮化硼的制备方法包括用水将硼酸、碳源、硝酸和尿素混合均匀,得到混合液,然后将所述混合液升温至300~500℃保温15~30min,得到前驱体,再将所述前驱体研磨成粉末,得到前驱体粉;将所述前驱体粉体在通氨气且温度为700~1000℃的条件下保温2~5h,制得氮化硼。所述氮化硼修饰玻碳电极的制备方法包括配制含有氮化硼的溶液;并将其滴加至玻碳电极表面,然后烘干,制得氮化硼修饰玻碳电极。本发明制备的氮化硼修饰玻碳电极在选择性测定抗坏血酸、多巴胺和/或尿酸的应用中具有良好的催化性能、检出限低,同时该电极具有良好的抗干扰性和稳定性。
-
公开(公告)号:CN108318551B
公开(公告)日:2019-06-11
申请号:CN201711481726.1
申请日:2017-12-29
Applicant: 北京科技大学
Abstract: 本发明涉及一种铁铝尖晶石复合材料、铁铝尖晶石复合材料修饰玻碳电极及其制备方法和应用。所述铁铝尖晶石复合材料的制备方法包括:将硝酸铁溶液和硝酸铝溶液混合,然后在60~80℃下搅拌,得到干凝胶,再将干凝胶研磨成粉末之后进行煅烧,制得铁铝尖晶石;用氧化石墨烯水溶液将硝酸铝和尿素混合,然后在150~200℃下保温,再经过离心处理,制得水合氧化铝‑还原氧化石墨烯复合材料;用乙醇将铁铝尖晶石与水合氧化铝‑还原氧化石墨烯复合材料混合,然后在60~100℃下干燥,制得铁铝尖晶石复合材料。本发明用铁铝尖晶石复合材料修饰玻碳电极,并将其应用于检测重金属离子,具有检测限低、检测范围宽、抗干扰性好及再现性好等优点。
-
公开(公告)号:CN109180205A
公开(公告)日:2019-01-11
申请号:CN201811171801.9
申请日:2018-10-09
Applicant: 北京科技大学
IPC: C04B35/66
Abstract: 本发明提供了一种铬铁矿耐火材料,包括45-65wt%的基质材料,20-30wt%的中颗粒骨料,15-25wt%的大颗粒骨料,以及结合剂;所述基质材料包括70-90wt%工业铬铁矿细粉,1-5wt%的熔融氧化镁粉,9-25wt%的α-氧化铝粉,以及所述工业铬铁矿细粉,熔融氧化镁粉和α-氧化铝粉总质量0.05-2.5wt%的分散剂;所述中颗粒骨料是粒度为1-3mm的工业铬铁矿颗粒,所述大颗粒骨料是粒度为3-5mm的工业铬铁矿颗粒。本发明还提供了一种铬铁矿耐火材料的制备方法。本发明制得的铬铁矿耐火材料,不仅微观结构相对致密,烧结过程结构稳定,而且耐渣侵蚀性能优异。
-
-
-
-
-
-
-
-
-