-
公开(公告)号:CN110085843A
公开(公告)日:2019-08-02
申请号:CN201910390798.8
申请日:2019-05-10
Applicant: 北京理工大学
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525
Abstract: 本发明涉及一种添加MOFs材料的高镍三元正极、制备方法和应用,属于储能材料及电化学领域。所述正极包括高镍三元正极材料LiNixCoyMn1-x-yO2、MOFs材料UiO-66、正极极片基底、导电剂和粘结剂。所述正极可辅助使用其的锂离子电池的正极/电解液界面生成稳定的固体电解质界面,缓解循环过程中过渡金属溶解,提升所述正极的循环性能和高温性能。通过将高镍三元正极材料粉末、UiO-66粉末、导电剂、粘结剂以及N-甲基吡咯烷酮按照不同加入混合的顺序研磨混合均匀获得浆料,将浆料涂布在正极极片基底上恒温干燥,制成所述正极;所述方法操作简单、易于制备且有助于工业化生产。
-
公开(公告)号:CN109980227A
公开(公告)日:2019-07-05
申请号:CN201910270892.X
申请日:2019-04-04
Applicant: 北京理工大学
IPC: H01M4/62
Abstract: 本发明涉及一种锂硫电池用复合粘结剂及其制备方法,属于化学储能电池领域。所述粘结剂由PVDF和PU复合而成,所述PU为支化结构的聚酯型聚氨酯,以所述粘结剂的总体质量为100%计,PU的质量分数为10~30%,其余为PVDF。所述方法通过将PVDF溶液和PU溶液按照PU占PVDF和PU总质量的10~30%混合,搅拌两天以上得到。PU的加入使得原本结晶较强的PVDF失去部分结晶态,从而使得本来应当出现孔隙的地方变得致密,维持了电极结构的稳定性,而且PU中的极性官能团抑制了多硫化物的溶解于扩散,使得目标粘结剂电极性能优良。所述方法操作简单,工艺及技术容易实现。
-
公开(公告)号:CN109494363A
公开(公告)日:2019-03-19
申请号:CN201811320254.6
申请日:2018-11-07
Applicant: 北京理工大学
Abstract: 本发明涉及一种SiOx原位改性的NCM三元正极材料及其制备方法,属于化学储能电池领域。以所述材料以总体质量为100%计,SiOx的质量分数为2~4%,其余为NCM三元正极材料,SiOx原位填充在NCM三元正极材料一次颗粒的缝隙中,其中1
-
公开(公告)号:CN105304901B
公开(公告)日:2018-10-26
申请号:CN201510621387.7
申请日:2015-09-25
Applicant: 北京理工大学
IPC: H01M4/58 , H01M4/62 , H01M10/0525
Abstract: 本发明涉及一种锂离子二次电池用负极材料及其制备方法,所述材料中包括掺杂有碳酸镍的碳酸锰,所述碳酸镍的掺杂量,即其与碳酸锰的摩尔比为1:100~30:100。所述制备方法是先将醋酸锰、醋酸镍、尿素以一定摩尔比混合,加入去离子水和醇类溶剂,经过水热反应制得所述掺杂有碳酸镍的碳酸锰。本发明获得的负极材料组分均一,过程无污染;首次放电容量大于1500mAh/g,100周循环后仍有至少500mAh/g容量,在保持稳定性的同时增强了容量保持率;所述制备方法简易更实现了商业化规模生产条件。
-
公开(公告)号:CN108172820A
公开(公告)日:2018-06-15
申请号:CN201711419178.X
申请日:2017-12-25
Applicant: 北京理工大学
IPC: H01M4/505 , H01M4/525 , H01M10/052
Abstract: 本发明涉及一种表层掺杂Y3+的NCM三元正极材料的制备方法,属于化学储能电池领域。本发明所述方法是在镍钴锰氢氧化物前驱体与锂盐进行混合的过程中进行Y3+掺杂的,掺杂的Y3+进入到表层的过渡金属层中,占据Ni2+的位置,能够起到支撑框架、抑制表层结构相变以及抑制Li+/Ni2+混排的作用;另外,Y3+的离子半径比较大,掺杂进入过渡金属层之后,有助于拓宽Li+嵌入嵌出的通道,有助于提高Li+的传输速率,能够显著改善NCM三元正极材料在高电压高倍率(4.5V,≥1C)下的电化学性能。
-
公开(公告)号:CN107215900A
公开(公告)日:2017-09-29
申请号:CN201710473738.3
申请日:2017-06-21
Applicant: 北京理工大学
IPC: C01G45/12 , H01M4/36 , H01M4/505 , H01M10/0525
CPC classification number: Y02E60/122 , C01G45/1257 , C01G45/1242 , C01P2002/20 , C01P2002/32 , C01P2002/72 , C01P2004/04 , C01P2004/80 , C01P2006/40 , H01M4/366 , H01M4/505 , H01M10/0525 , H01M2004/028
Abstract: 本发明涉及一种在富锂锰基正极材料表层构造尖晶石结构的方法,属于化学储能电池领域。所述方法是将富锂锰基正极材料加入到弱酸水溶液中,进行Li+与H+离子交换,再将离子交换后的正极材料进行热处理使表层欠锂结构转变成尖晶石结构,得到表层具有尖晶石结构的富锂锰基正极材料。本发明所述方法是将本体材料的表层结构转变成尖晶石结构,不仅保证锂离子传输通道的畅通,而且改善了富锂锰基正极材料的倍率性能以及提高了首周库伦效率;另外,所述方法可以通过调节弱酸的浓度以及处理时间,有效调节构造的尖晶石层的深度,从而调节电极材料的电化学性能,这种调控方式简便、易行,不必要求严格控制反应时间,重复可靠性高。
-
公开(公告)号:CN106711412A
公开(公告)日:2017-05-24
申请号:CN201611147525.3
申请日:2016-12-13
Applicant: 北京理工大学
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525
Abstract: 本发明涉及一种复合富锂锰基正极材料及其制备方法,属于化学储能电池领域。所述正极材料是具有核壳结构的复合材料,利用络合的方法在富锂锰基正极材料的表面制备出沉积厚度均匀的NaZr2(PO4)3包覆层;而且通过改变NaZr2(PO4)3和富锂锰基正极材料的质量比,可以得到不同形貌、结构及排布的包覆层。NaZr2(PO4)3包覆层的存在对Li+的迁移扩散有不同程度的改善,进而表现出不同程度的电化学性能提升;本发明所述的复合富锂锰基正极材料能够实现电池的高倍率充放电,提高电池的循环稳定性。
-
公开(公告)号:CN104916820B
公开(公告)日:2017-05-10
申请号:CN201510239604.6
申请日:2015-05-12
Applicant: 北京理工大学
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525
Abstract: 本发明涉及一种锂离子电池用硅基负极材料及其制备方法,所述材料的原料中包括下式(1)所示的化合物的一种或多种,以及硅纳米颗粒:其中,两个‑OH为邻位、间位或对位,优选为间位;R1为取代或未取代的芳杂环,所述取代基选自C1‑C4的烷基、卤素、烯基或芳基;R2相同或不同,彼此独立地为H、C1‑C4的烷基、卤素、烯基或芳基。本发明利用所述化合物的高导电性和特殊的粘性,在保持硅纳米颗粒高循环容量的同时,提高了循环稳定性,延长了电池的使用寿命。其简易的“类溶胶‑凝胶”制备方法,在满足锂电正极材料对负极容量需求的同时,更实现了商业化规模生产条件。
-
公开(公告)号:CN104916821A
公开(公告)日:2015-09-16
申请号:CN201510239618.8
申请日:2015-05-12
Applicant: 北京理工大学
IPC: H01M4/36 , H01M4/48 , H01M4/62 , H01M10/0525
CPC classification number: H01M4/366 , H01M4/483 , H01M4/625 , H01M10/0525
Abstract: 本发明涉及一种锂离子电池用一氧化硅基负极材料,所述材料的原料中包括一氧化硅纳米颗粒和四类化合物中的一种或多种。本发明利用所述化合物的高导电性和特殊的粘性,在保持一氧化硅纳米颗粒高循环容量的同时,提高了循环稳定性,延长了电池的使用寿命,在满足锂离子电池正极材料对负极容量需求的同时,更实现了商业化规模生产条件。
-
公开(公告)号:CN101572309A
公开(公告)日:2009-11-04
申请号:CN200910085938.7
申请日:2009-06-08
Applicant: 北京理工大学
Abstract: 本发明涉及一种复合掺杂α-Ni(OH)2的微乳液合成法,属于贮能电极材料领域。该方法以微乳液分散液滴作为微反应器,通过复合掺杂两种或两种以上正二或正三价金属阳离子合成纳米级稳定化α-Ni(OH)2。掺杂离子中至少一种半径比Ni2+大,一种半径比Ni2+小,比Ni2+大的包括Cu2+、Y3+、Cr3+、Zn2+,比Ni2+小的包括Al3+、Mn2+、Co2+,掺杂离子与亚镍离子的比例为0~0.2。所用微乳液系统中,表面活性剂为曲拉通X-100,助表面活性剂为正丁醇,二者以0.06~6的质量比混合,溶于5倍体积的环己烷中,作为乳化剂;微乳液中乳化剂的用量为水溶液体积的0~0.05。该方法所得材料粒径均匀,作为MH/Ni电池正极活性物质,放电比容量高,循环稳定性好。
-
-
-
-
-
-
-
-
-