多阴离子掺杂单晶高镍正极材料及其制备方法

    公开(公告)号:CN112652771A

    公开(公告)日:2021-04-13

    申请号:CN202011525363.9

    申请日:2020-12-22

    Abstract: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。

    一种表面高密度位错的NCM三元正极材料的制备方法

    公开(公告)号:CN110970616B

    公开(公告)日:2022-06-24

    申请号:CN201911333077.X

    申请日:2019-12-23

    Abstract: 本发明涉及一种表面高密度位错的NCM三元正极材料的制备方法。所述方法是首先将NCM三元正极材料浸泡在酸性缓冲溶液中一定时间,在随后的惰性气体氛围中退火煅烧时,调控煅烧时间及温度并最终在材料表面形成大量氧空位。氧空位的形成导致材料表面层状结构出现高密度位错。高密度位错的交割作用会抑制在长循环充放电过程中由于材料颗粒相互挤压产生的位错向材料内部移动,因此材料的颗粒完整性得到保持;同时颗粒的完整性减少了材料新鲜表面的暴露,降低电解液对正极材料的侵蚀,同时降低界面副反应,从而提高材料在循环充放电过程中的循环稳定性。本发明所示方法中所用原料无毒环保,符合绿色化学的要求,操作简单,便于实施,具有良好的工业应用前景和经济效益。

    一种表面高密度位错的NCM三元正极材料的制备方法

    公开(公告)号:CN110970616A

    公开(公告)日:2020-04-07

    申请号:CN201911333077.X

    申请日:2019-12-23

    Abstract: 本发明涉及一种表面高密度位错的NCM三元正极材料的制备方法。所述方法是首先将NCM三元正极材料浸泡在酸性缓冲溶液中一定时间,在随后的惰性气体氛围中退火煅烧时,调控煅烧时间及温度并最终在材料表面形成大量氧空位。氧空位的形成导致材料表面层状结构出现高密度位错。高密度位错的交割作用会抑制在长循环充放电过程中由于材料颗粒相互挤压产生的位错向材料内部移动,因此材料的颗粒完整性得到保持;同时颗粒的完整性减少了材料新鲜表面的暴露,降低电解液对正极材料的侵蚀,同时降低界面副反应,从而提高材料在循环充放电过程中的循环稳定性。本发明所示方法中所用原料无毒环保,符合绿色化学的要求,操作简单,便于实施,具有良好的工业应用前景和经济效益。

    多阴离子掺杂单晶高镍正极材料及其制备方法

    公开(公告)号:CN112652771B

    公开(公告)日:2021-12-14

    申请号:CN202011525363.9

    申请日:2020-12-22

    Abstract: 本发明公开了一种多阴离子掺杂单晶高镍正极材料及其制备方法,包括以下步骤:S1、将阴离子A与锂盐和高镍单晶三元前驱体三者在无水乙醇中混合均匀,得到第一混合物;S2、将第一混合物置于管式炉中进行煅烧,得到单阴离子掺杂的单晶高镍正极材料;S3、将阴离子B与S2中得到的单晶高镍正极材料分别置于管式炉中进行气相掺杂即得。本发明通过将掺有一种阴离子的前驱体煅烧得到单阴离子掺杂的单晶高镍三元正极材料,随后将另一种阴离子与已得到的单阴离子掺杂的高镍单晶三元正极材料进行气相掺杂,成功得到了多阴离子掺杂的高镍单晶正极材料,克服了传统方式不能有效实现多阴离子掺杂的缺陷,掺杂效果优异,成功提高了单晶高镍三元材料的倍率性能。

    一种表面包覆ZnO和Li2ZnO2的高镍NCM三元正极材料及其应用

    公开(公告)号:CN114975915A

    公开(公告)日:2022-08-30

    申请号:CN202210497236.5

    申请日:2022-05-09

    Abstract: 本发明涉及一种表面包覆ZnO和Li2ZnO2的高镍NCM三元正极材料及其应用,属于锂离子电池技术领域。首先将无水醋酸锌加入无水乙醇中超声分散均匀,然后加入高镍NCM三元正极材料,密封后磁力搅拌2h~3h,搅拌结束后除去无水乙醇,得到的材料于氧气氛围中,380℃~500℃下煅烧240min~360min,煅烧结束后得到所述材料。通过一步处理可在材料表面同时实现非晶ZnO、晶体Li2ZnO2共同包覆及微量Zn的表层掺杂,在减少材料表面残碱、岩盐相的同时不破坏二次颗粒的层状结构,且减少了正极材料和电解液间的副反应、抑制了材料在循环过程中的结构坍塌及性能衰减,提升了材料的结构稳定性和电化学循环性能。

Patent Agency Ranking