-
公开(公告)号:CN115829017B
公开(公告)日:2023-05-23
申请号:CN202310156339.X
申请日:2023-02-20
Applicant: 之江实验室
Abstract: 本说明书公开了一种基于芯粒的数据处理的方法、装置、介质及设备。首先,获取芯粒阵列的阵列尺寸以及神经网络模型对应的有向无环图。其次,根据芯粒阵列的阵列尺寸,构建各类算子的划分策略集合以及芯粒分配策略集合。而后,根据神经网络模型中的各算子在有向无环图中的深度,确定各算子所要加入的调度搜索模块。然后,针对每个调度搜索模块,根据各类算子的划分策略集合以及芯粒分配策略集合,确定满足预设条件的各策略组合,并计算该调度搜索模块中对应的各策略组合所需的运算开销,确定目标策略组合。最后,根据各调度搜索模块对应的目标策略组合,执行神经网络模型的运算任务。本方法可以合理的分配芯粒资源,提高芯粒资源的资源利用率。
-
公开(公告)号:CN115860081A
公开(公告)日:2023-03-28
申请号:CN202310179898.2
申请日:2023-03-01
Applicant: 之江实验室
Abstract: 本发明涉及一种芯粒算法调度方法,包括:获取待调度的神经网络算法计算图;获取芯粒的拓扑结构,并基于拓扑结构生成芯粒资源列表;对神经网络算法计算图进行图优化;对计算图划分并行组;对计算图进行活跃性分析;生成计算图中的每个算子的策略和对应的开销;生成整数线性规划的优化变量;设定整数线性规划的求解目标;设定整数线性规划的约束条件;求解整数线性规划问题;将求解整数线性规划问题得到的解作为计算图在芯粒上的调度方法。与现有技术相比,本发明基于整数线性规划技术,将算法调度空间搜索问题转换成整数线性规划求解问题,通过设置多种求解约束缩小策略探索空间,能够在很短的时间内得到神经网络算法在芯粒上最优的调度方案。
-
公开(公告)号:CN115829017A
公开(公告)日:2023-03-21
申请号:CN202310156339.X
申请日:2023-02-20
Applicant: 之江实验室
Abstract: 本说明书公开了一种基于芯粒的数据处理的方法、装置、介质及设备。首先,获取芯粒阵列的阵列尺寸以及神经网络模型对应的有向无环图。其次,根据芯粒阵列的阵列尺寸,构建各类算子的划分策略集合以及芯粒分配策略集合。而后,根据神经网络模型中的各算子在有向无环图中的深度,确定各算子所要加入的调度搜索模块。然后,针对每个调度搜索模块,根据各类算子的划分策略集合以及芯粒分配策略集合,确定满足预设条件的各策略组合,并计算该调度搜索模块中对应的各策略组合所需的运算开销,确定目标策略组合。最后,根据各调度搜索模块对应的目标策略组合,执行神经网络模型的运算任务。本方法可以合理的分配芯粒资源,提高芯粒资源的资源利用率。
-
公开(公告)号:CN115409174A
公开(公告)日:2022-11-29
申请号:CN202211354686.5
申请日:2022-11-01
Applicant: 之江实验室
Abstract: 本发明公开一种基于DRAM存内计算的碱基序列过滤方法与装置,该方法为:步骤一,根据DRAM的存储阵列的列宽和所要筛选目标碱基序列的起点地址,筛选出目标碱基序列后进行重新整理组合;步骤二,对重新整理组合后的目标碱基序列分别进行碱基为A腺嘌呤、G鸟嘌呤、C胞嘧啶、T胸腺嘧啶的标记并获取到对应碱基的标记行;步骤三,对标记行数据进行移位后统计标记行中位置值为1的个数,获得对应碱基的统计结果;步骤四,利用参考碱基序列的统计结果与所述目标碱基序列的统计结果进行对比,过滤所筛选的目标碱基序列。本发明将位置匹配筛选放置在内存子阵列中进行,减少了大量数据在cpu与内存之间的搬移,成倍提升了计算效率,降低了功耗。
-
公开(公告)号:CN115062771A
公开(公告)日:2022-09-16
申请号:CN202210981014.0
申请日:2022-08-16
Applicant: 之江实验室
Abstract: 本发明公开了一种分布式机器学习梯度汇聚方法、装置及模型训练方法,利用智能交换机进行计算节点梯度汇聚任务调度和模型训练。智能交换机不仅包含正常的网络交换功能,还能对梯度数据包进行解析,抽取包内数据并进行计算,并将结果重新组包发送给相关计算服务器,提供更为高效的数据交换服务。智能交换机将多台计算服务器连接起来组成训练网络,共同完成神经网络模型训练任务。本发明实现分布式机器学习训练,可优化梯度汇聚时间,减少梯度交换流量,加速大模型训练。
-
公开(公告)号:CN111459552B
公开(公告)日:2020-10-13
申请号:CN202010545142.1
申请日:2020-06-16
Applicant: 之江实验室
Abstract: 本发明公开了一种并行化存内计算的方法及装置,该方法利用现有DRAM内存存储电路的充放电特性实现了并行化的加法计算,并且通过优化数据存储及计算流程,进一步提高了数据并行计算的效率。本发明使得数据存储与计算都可以在DRAM中实现,可大大地缓解内存墙问题,同时不需要依赖新型非易失存储器件,可降低内存计算的复杂度和成本。
-
公开(公告)号:CN111459552A
公开(公告)日:2020-07-28
申请号:CN202010545142.1
申请日:2020-06-16
Applicant: 之江实验室
Abstract: 本发明公开了一种并行化存内计算的方法及装置,该方法利用现有DRAM内存存储电路的充放电特性实现了并行化的加法计算,并且通过优化数据存储及计算流程,进一步提高了数据并行计算的效率。本发明使得数据存储与计算都可以在DRAM中实现,可大大地缓解内存墙问题,同时不需要依赖新型非易失存储器件,可降低内存计算的复杂度和成本。
-
公开(公告)号:CN117632148A
公开(公告)日:2024-03-01
申请号:CN202311611108.X
申请日:2023-11-29
Applicant: 之江实验室
Abstract: 本发明公开了一种面向芯粒的深度大模型容错部署优化方法和系统,该方法包括以下步骤:获取深度大模型的计算图、算子的划分策略及故障芯粒不规则拓扑结构;通过优化算子的划分策略和硬件资源数量分配策略,最小化计算图的计算开销、通信开销和随机映射的链路争用开销,得到算子的最佳划分策略和最佳资源分配数量;通过优化算子基于芯粒不规则拓扑结构的硬件映射策略,最小化芯粒故障网络的链路争用开销,得到算子的最佳映射方案;将上述开销视为总执行开销,通过迭代优化最小化总执行开销,最终获得最佳调度方案。本发明方法能够得到推理性能更强大且执行开销更小的调度方案,推动深度学习大模型在芯粒上的容错部署和优化技术的发展和应用。
-
公开(公告)号:CN117459652A
公开(公告)日:2024-01-26
申请号:CN202311487545.5
申请日:2023-11-08
Applicant: 之江实验室
IPC: H04N1/41 , H04N1/00 , H04N19/42 , G06V10/764 , G06N3/0464
Abstract: 本发明公开了一种基于国产芯片的遥感图像星上混合压缩方法及装置,该方法包括:获取待压缩遥感图像;将待压缩遥感图像分割得到的若干区域图像并进行原始图像位置标记;对于每个区域图像,利用分类识别算法计算该区域图像中内容的重要度,其中分类识别算法已在地面训练完成、移植到国产芯片并上传至星上;根据实时需求和各区域图像中内容的重要度确定对应压缩比例,从而进行各区域图像的压缩;根据各区域图像的原始图片位置标记,将压缩后的各区域图像进行反向拼接,已形成与待压缩遥感图像尺寸一致的混合压缩遥感图像。打破了国产芯片复杂压缩算法移植困难的困境,将压缩算法分解,既针对多目标进行压缩权重指定,又大幅提高了整体压缩效率。
-
公开(公告)号:CN116935155A
公开(公告)日:2023-10-24
申请号:CN202310766856.9
申请日:2023-06-27
Applicant: 之江实验室
IPC: G06V10/774 , G06V10/764 , G06T7/11 , G06T3/40 , G06T3/60 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本申请涉及一种多阶段遥感图像目标检测方法、装置、计算机设备和计算机可读存储介质,其中,多阶段遥感图像目标检测方法包括:将遥感图像输入至预先训练的第一目标检测网络,输出多个预测框及对应的预测信息;在所述预测框对应的置信度大于第二阈值的情况下,获得第一目标检测结果;在所述预测框对应的置信度介于第一阈值和所述第二阈值之间的情况下,根据所述预测框的位置信息对所述遥感图像进行剪切、旋转、缩放处理后输入至预先训练的第二目标检测网络,获得第二目标检测结果;基于所述第一目标检测结果和所述第二目标检测结果,得到最终目标检测结果。解决了遥感图像目标检测结果精度低的问题,提高了遥感图像目标检测结果的准确性。
-
-
-
-
-
-
-
-
-