-
公开(公告)号:CN113792508A
公开(公告)日:2021-12-14
申请号:CN202111325922.6
申请日:2021-11-10
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种考虑表面质量引射效应的气动热计算方法,包括步骤:S1,获取高超声速飞行器的几何外型;S2,针对获取的高超声速飞行器的几何外型进行网格划分;S3,获取高超声速来流速度数据、高超声速来流温度数据、高超声速来流密度数据和高超声速来流压力数据,并输入表面质量引射气体质量流率数据和表面质量引射气体温度数据到计算机处理器中;S4,计算表面质量引射气体密度数据、表面质量引射气体速度数据、表面质量引射气体压力数据和表面质量引射气体温度数据;S5,计算高超声速飞行器壁面热流数据,通过所述壁面热流数据表达高超声速飞行器的气动热环境;本发明可以更精准地预测含表面质量引射的高超声速飞行器气动热环境。
-
公开(公告)号:CN113514021A
公开(公告)日:2021-10-19
申请号:CN202110649550.6
申请日:2021-06-10
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明属于高超声速飞行器热防护技术领域,主要解决当前飞行器设计中采用复合材料特别是碳/碳化硅(C/SiC)基体材料的有关烧蚀问题,提供一种复合材料质量损失和氧化层厚度的评估方法,该方法在获得孔隙率的基础上,根据理论关系式,可以评估氧化层厚度和复合材料的质量损失。在用于高超声速飞行器防热设计时,评价C/SiC基体材料抗烧蚀性能,主要的参数为氧化层厚度和材料质量损失,本发明提出的方法具有通用性强、精度较高、成本低、周期短等特点。
-
公开(公告)号:CN113158339A
公开(公告)日:2021-07-23
申请号:CN202110408433.0
申请日:2021-04-16
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种针对SST湍流模型的湍流长度尺度修正方法,本修正方法以无量纲速度散度λl的值为基本自变量来确定修正源项的大小,通过控制函数tanh(h2(η‑h3))‑1实现了对修正源项作用区域的控制。本发明方法不依赖于壁面距离这一参数,而是根据流场中速度散度的强度大小来确定修正源项的大小,可以有效避免现有代数方法的不足。
-
公开(公告)号:CN111931294A
公开(公告)日:2020-11-13
申请号:CN202010908995.7
申请日:2020-09-02
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种基于物理量梯度修正的紧支基函数多场耦合数据传递方法。本发明通过在原始紧支基函数计算方法中,根据物理量梯度大小,对径向基计算中的xyz三方向进行系数缩比调控,以求在相同的紧支半径范围内,选取更多物理量变化剧烈的点进行插值,从而使用来插值的点能够更具有代表性和聚集性,具有实际物理量分布的各向异性特征,从而使插值的结果更能表征物理实际分布特征,从而提高精度。因此本发明可以为飞行器气动力/热/结构多场耦合计算提供一种可行的具备更高精度的数据传递方法。
-
公开(公告)号:CN111579126A
公开(公告)日:2020-08-25
申请号:CN202010500916.9
申请日:2020-06-04
Applicant: 西南科技大学 , 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明提供一种高温热流传感器,包括:基于横向热电效应进行工作的敏感层,所述敏感层包括倾斜(AB)N多层膜,倾斜(AB)N多层膜由两种不同的材料A和材料B交替堆砌而成。所述倾斜(AB)N多层膜相对于水平方向存在一倾斜角α,0°>α>90°。本发明的热流传感器能工作于高温环境下,且制作工艺简单。本发明所选的材料在空气环境中工作上限温度都能到800℃。通过选取特定材料,热流传感器的工作温度甚至可以高达1500℃。
-
公开(公告)号:CN108051475B
公开(公告)日:2020-08-14
申请号:CN201711264300.0
申请日:2017-12-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01N25/20
Abstract: 本发明公开了一种对流换热系数的快速测量方法,适用于介质表面随温度变化条件的流换热系数测量。该测量方法核心思想是,将对流换热系数的测量转换为求解热传导问题边界未知参数的优化问题,根据介质温度‑超声传播特性,采用超声回波法,基于热传导反问题的求解可快速、无损地测量随温度变化的表面流换热系数;本发明的方法具有测量装置简单、测量周期短、避免传感器与被测试件接触干扰以及测量范围不受传感器耐高温性能限制等优点。
-
公开(公告)号:CN110567413A
公开(公告)日:2019-12-13
申请号:CN201910759566.5
申请日:2019-08-16
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及一种获取复合材料氧化膜层厚度的方法、装置及电子设备,该方法从烧蚀过程的基本原理出发,通过理论分析和公式推导,给出了该类材料在惰性氧化阶段的通用表达式,建立了不同组分之间热物性数据的关系,从而根据纯物质的测量结果,通过简单计算得到复合材料的热物性参数,进而获得复合材料的氧化膜层厚度,根据复合材料氧化膜层厚度对飞行器的热防护性能进行判断,可使问题得到大大简化,并且避开工艺和杂质的影响,获得准确的数据,并可极大地缩短设计周期,此外,本发明方法具有通用性,适用范围广,实用性强。
-
公开(公告)号:CN104792435B
公开(公告)日:2018-02-13
申请号:CN201510190566.X
申请日:2015-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/24
Abstract: 本发明公开了一种基于瞬态热边界反演的结构内部非均匀温度场的重建方法,该方法基于超声脉冲回波的渡越时间,反演导致结构温度变化的瞬态热边界条件,在此基础上,通过求解热传导方程,重建结构内部非稳态的温度分布。相较于现有的超声测温方法而言,超声探测的内部温度并非直接由渡越时间获得,而是通过反演的瞬态热边界条件计算得到,因此本发明获得的温度不再是传播路径上的单一平均值,而是具体的温度分布,其温度分辨率更高、稳定性更好,可实现固体结构内部不同时刻温度分布的实时高精度重建。
-
公开(公告)号:CN104596667B
公开(公告)日:2017-12-01
申请号:CN201510003663.3
申请日:2015-01-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种超声波探测物体内部瞬态非均匀温度场的灵敏度方法,根据标定不同温度条件下被测试件母材内超声波传播时间与温度的相关关系以及由超声波脉冲回波法获得的测量全过程时间及对应时刻下的超声波传播时间,求解基于解灵敏度方程的热传导反问题,要求优化所得等效的温度边界条件使得数值模拟所得的超声在物体内传播时间与实测的超声波传播时间差值最小,再通过热传导正问题的求解即可获得试件内部不同时刻的温度场分布状态。实现快速准确地获得金属或金属合金物体表面温度和内部非均匀温度场的优点。实现对金属或合金物体表面温度和温度内部瞬态非均匀温度场的实时测量。
-
公开(公告)号:CN107368661A
公开(公告)日:2017-11-21
申请号:CN201710621122.6
申请日:2017-07-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F17/50
Abstract: 本发明公开了一种高超声速飞行器热气动弹性特性的耦合计算方法,从气动力、气动热、结构传热和结构应力/变形等物理场特征时间出发,在考虑现有计算资源和不降低耦合计算精度的前提下,有效减小了耦合分析方法的计算量,可用于高超声速飞行器实际结构的热气动弹性分析。本发明通过监控结构温度场的变化情况实现了耦合时间步长的动态调整,在有效保证耦合计算精度的情况下,大幅度提升耦合计算效率这一难题。该方法可有效实现高超声速飞行器整机结构或部件的热气动弹性特性分析;同时,对同样涉及飞行器流-热-固耦合计算问题也具备求解能力,譬如气动热与传热耦合问题、结构热安全性评估问题等。
-
-
-
-
-
-
-
-
-