-
公开(公告)号:CN107394200A
公开(公告)日:2017-11-24
申请号:CN201710631713.1
申请日:2017-07-28
Applicant: 长安大学
IPC: H01M4/505 , H01M4/58 , H01M4/62 , H01M4/13915 , H01M10/0525
CPC classification number: H01M4/505 , H01M4/13915 , H01M4/582 , H01M4/62 , H01M10/0525 , H01M2004/028
Abstract: 本发明公开了一种氟铁酸钾改性富锂锰基层状锂离子电池正极材料,其化学通式为(xLi2MnO3·(1-x)LiMO2)/yK4Fe3F12;其中,0.1≤x≤0.9,0.001≤y≤0.6,M为Mn、Ni和Co;其包括以下原料组分:锰原料、镍原料、钴原料、锂盐、钾源、铁源、氟源、络合剂和液体溶剂。并公开了该材料的制备方法:首先采用不同的方法制备出粉末状富锂锰基层状锂离子电池正极材料,然后水热法制备粉末状氟铁酸钾前驱体,最后将二者混合,研磨,即得。本发明的氟铁酸钾改性富锂锰基层状锂离子电池正极材料显著提高了电池正极材料的循环稳定性,改善了电池正极材料的容量衰减以及倍率性能差的问题。
-
公开(公告)号:CN106803582A
公开(公告)日:2017-06-06
申请号:CN201710057329.5
申请日:2017-01-26
Applicant: 长安大学
IPC: H01M4/36 , H01M4/58 , H01M4/62 , H01M10/054
Abstract: 本发明属于钠离子电池制备技术领域,具体公开了一种钠离子电池负极材料,包括MIL‑125(Ti)、磷酸二氢钠、磷酸二氢铵和溶剂。其制备方法为:首先将MIL‑125(Ti)、磷酸二氢钠和磷酸二氢铵分别溶解在溶剂中,并将其混合,搅拌均匀,反应得混合液,再蒸发掉混合液中的溶剂,得白色固体粉末;再将白色固体粉末在气氛炉中煅烧,得到黑色固体粉末,即得。本发明的制备方法简便易行,一步实现了NaTi2(PO4)3与导电碳材料的复合,制备得到的钠离子电池负极材料比容量较高,循环稳定性较好。
-
公开(公告)号:CN104993101A
公开(公告)日:2015-10-21
申请号:CN201510255755.0
申请日:2015-05-19
Applicant: 长安大学
Abstract: 本发明涉及锂离子电池制备领域,公开了一种正硅酸盐纳米纤维锂离子电池正极活性材料及其制备方法。该正极活性材料为正硅酸盐Li2MSiO4纳米晶体与非晶碳组成的正硅酸盐碳Li2MSiO4/C复合纳米纤维锂离子电池正极活性材料,其中,M为Fe、Mn、Co或Ni;其制备方法为:首先称取碳原料并溶于液体溶剂中,形成第一溶液;再依次称取硅原料、锂盐和M盐另溶于所述液体溶剂中,形成第二溶液;然后,将第二溶液加入第一溶液,恒温搅拌均匀,形成第三溶液,再将第三溶液恒温蒸发成凝胶,最后对凝胶进行热处理,即得。
-
公开(公告)号:CN101234786B
公开(公告)日:2011-05-11
申请号:CN200810017530.1
申请日:2008-02-22
Applicant: 长安大学
IPC: C01G41/00
Abstract: 本发明公开了一种具有富勒烯结构的纳米二硫化钨的制备方法,其制备过程是采用两步法合成:首先通过酸化钨酸钠,或者通过钨酸钠进行阳离子交换,获得钨酸溶胶,在钨酸溶胶中添加有机分散剂,在还原炉中采用氢气还原获得纳米WO3-x。其次,将纳米WO3-x与单质硫混合后在密闭的金属容器中进行自加压反应,获得具有富勒烯结构纳米二硫化钨粉体材料。本发明合成的富勒烯结构纳米二硫化钨颗粒直径为5-100纳米,二硫化钨颗粒中部分纳米管或棒状物质截面直径在5-100nm,长度可达几十位米以上。这种具有富勒烯结构的纳米材料是一种新型的固体润滑剂。本发明工艺简单,生产效率高,产品成本低,适合宏量制备富勒烯结构纳米二硫化钨。
-
公开(公告)号:CN101294942B
公开(公告)日:2010-11-17
申请号:CN200810150025.4
申请日:2008-06-10
Applicant: 长安大学
Abstract: 本发明公开了微波加热测定水泥或粉煤灰中游离氧化钙的方法及装置。将水泥或粉煤灰与游离氧化钙溶出剂一同装于磨口锥形瓶中,在微波炉中回流加热后,游离氧化钙溶出后通过苯甲酸标准溶液滴定,最终确定试样中的游离氧化钙的含量。装置包括微波炉上连接加热功率旋钮和加热时间旋钮,微波炉内腔置锥形瓶,锥形瓶上端插入一根冷凝管,其冷凝管上端与循环冷却水箱相通连接、其下端与循环水泵相通连接,锥形瓶内腔装有水泥或粉煤灰试样与游离氧化钙溶出介质。采用微波炉为加热热源,加热速度快,加热从溶液内部开始,操作方便,游离氧化钙溶出速率明显提高,减少溶出次数,提高测定速度,微波加热热效率高,节能,装置使用寿命长。
-
公开(公告)号:CN101294942A
公开(公告)日:2008-10-29
申请号:CN200810150025.4
申请日:2008-06-10
Applicant: 长安大学
Abstract: 本发明公开了微波加热测定水泥或粉煤灰中游离氧化钙的方法及装置。将水泥或粉煤灰与游离氧化钙溶出剂一同装于磨口锥形瓶中,在微波炉中回流加热后,游离氧化钙溶出后通过苯甲酸标准溶液滴定,最终确定试样中的游离氧化钙的含量。装置包括微波炉上连接加热功率旋钮和加热时间旋钮,微波炉内腔置锥形瓶,锥形瓶上端插入一根冷凝管,其冷凝管上端与循环冷却水箱相通连接、其下端与循环水泵相通连接,锥形瓶内腔装有水泥或粉煤灰试样与游离氧化钙溶出介质。采用微波炉为加热热源,加热速度快,加热从溶液内部开始,操作方便,游离氧化钙溶出速率明显提高,减少溶出次数,提高测定速度,微波加热热效率高,节能,装置使用寿命长。
-
公开(公告)号:CN107523815B
公开(公告)日:2019-11-01
申请号:CN201710562083.7
申请日:2017-07-11
Applicant: 长安大学
Abstract: 本发明提出一种三维多孔泡沫镍的制备方法,包括以下步骤:将泡沫镍片在活化液中进行活化,所述活化液包括氯化钯和盐酸的混合液;经活化后的泡沫镍片放入混合溶液中浸泡得到三维多孔泡沫镍,所述混合溶液包括柠檬酸三钠、硫酸镍、硼酸和次亚磷酸钠、2,4,7,9‑四甲基‑5‑癸炔‑4,7‑二醇,十六烷基三甲基溴化铵和三乙醇胺的混合液。本发明的制备方法,相对于模板法、去合金法和电沉积法等工艺更加简单,耗能低,成本低,易规模化生产,制备出的多孔泡沫镍为1‑5微米的贯穿圆形孔。
-
公开(公告)号:CN110350146A
公开(公告)日:2019-10-18
申请号:CN201910476480.1
申请日:2019-06-03
Applicant: 长安大学
IPC: H01M4/134 , H01M4/1395 , H01M4/36 , H01M4/38 , H01M4/62 , H01M10/054
Abstract: 本发明提供了一种改性三维多孔锑电极、制备方法及应用,以三维多孔铜为集流体,采用电沉积法在其表面沉积锑,沉积量为0.5~1.8mg cm-2,制得三维多孔锑电极,再将所述三维多孔锑电极作为阴极,镀铂钛网为阳极,恒电位沉积得到表面沉积有金属铟的三维多孔锑电极,最后将所述的表面沉积有金属铟的三维多孔锑电极置于重铬酸钾溶液中氧化处理,得到改性三维多孔锑电极。本发明的改性三维多孔锑电极,采用了氧化铟包覆层,减少了电极/电解质界面副反应的发生,增大了锑电极作为钠离子电池负极的首次库伦效率和循环稳定性。
-
公开(公告)号:CN107460460B
公开(公告)日:2019-05-21
申请号:CN201710562980.8
申请日:2017-07-11
Applicant: 长安大学
Abstract: 本发明提出一种制备自支撑三维多孔铜薄膜的方法,包括以下步骤:将玻璃薄膜或塑料薄膜在敏化液中进行敏化,随后在活化液中进行活化,所述活化液包括氯化钯和盐酸的混合液;经活化后的玻璃薄膜或塑料薄膜放入混合溶液中浸泡得到前驱体,所述混合溶液包括柠檬酸三钠、硫酸镍、硫酸铜、硼酸、次亚磷酸钠、2,4,7,9‑四甲基‑5‑癸炔‑4,7‑二醇、十六烷基三甲基溴化铵和聚乙二醇的混合液;将前驱体加热到使前驱体中的玻璃薄膜脱离,或者将前驱体中的塑料薄膜用有机溶剂溶掉,获得自支撑三维多孔铜薄膜。本发明的制备方法,相对于模板法、去合金法和电沉积法等工艺,极大简化了制备步骤,只简单采用敏化、活化及浸泡即可实现。
-
公开(公告)号:CN105489894B
公开(公告)日:2019-03-26
申请号:CN201610052553.0
申请日:2016-01-26
Applicant: 长安大学
IPC: H01M4/60 , H01M4/583 , H01M4/139 , H01M10/0525
Abstract: 本发明属于锂离子电池电极材料技术领域,公开了一种金属甲酸盐/碳纳米管锂离子电池负极材料及其制备方法,其包括以下原料组分:金属硝酸盐、甲酸、N,N‑二甲基甲酰胺、酸化碳纳米管,其中,金属硝酸盐包括硝酸镍、硝酸钴、硝酸锌、硝酸锰;金属硝酸盐与甲酸的摩尔比为1∶5‑1∶8;酸化碳纳米管的质量为金属硝酸盐质量的10%‑40%;制备方法采用溶剂热法,得到的金属甲酸盐/碳纳米管锂离子电池负极材料通过碳纳米管的有效包覆,显著提高了材料的电导率,使其具有较高的比容量和循环稳定性,能够发挥碳纳米管和金属有机骨架材料二者各自的优势,是一种理想的锂离子电池负极材料,且本发明方法制备工艺简单,操作方便易行。
-
-
-
-
-
-
-
-
-