-
公开(公告)号:CN108982568B
公开(公告)日:2020-03-17
申请号:CN201810617604.9
申请日:2018-06-15
Applicant: 武汉大学
Abstract: 本发明公开了一种利用低磁场核磁共振无损检测混凝土硫酸盐侵蚀损伤的方法,属于混凝土材料侵蚀破坏研究领域。具体是对不同腐蚀龄期的混凝土经真空饱和处理后,进行低磁场核磁共振(NMR)探测,获得混凝土孔隙中含氢流体的弛豫特征及核磁共振成像(MRI)结果。通过对弛豫特征中T2谱分布、T2谱分布积分面积的数值分析以及核磁共振成像结果得到的图像分析,综合研究混凝土初始状态及硫酸盐侵蚀过程中内部微观结构的变化,得到试件的缺陷(孔隙、裂纹)信息,包括孔隙度、孔隙结构特征及分布。基于此,实时观测混凝土试件微观结构在荷载和硫酸盐耦合作用下的侵蚀损伤积累和演化规律。
-
公开(公告)号:CN108563911B
公开(公告)日:2020-03-10
申请号:CN201810441710.6
申请日:2018-05-10
Applicant: 武汉大学
Abstract: 本发明提供一种预测原级配筑坝堆石料最小孔隙比的方法,包括:步骤1.对超径粒进行缩尺处理,将原级配堆石料缩尺为试验级配,测得试验级配下堆石料的最小孔隙比;步骤2.选取多个代表粒径,通过最小孔隙比试验得到单一粒径组的堆石料最小孔隙比与其平均粒径的函数表达式;步骤3.将连续的试验级配曲线划分为多段,建立试验级配堆石料最小孔隙比的函数表达式,并使用基于粒子迁徙的粒群算法寻找表达式中形状参数最优解;步骤4.对照试验级配建立原级配堆石料最小孔隙比的函数表达式,并将形状参数的最优解代入该函数表达式计算出原级配筑坝堆石料的最小孔隙比。本方法预测精度高,可以较为便捷和准确地预测原级配筑坝堆石料的最小孔隙比。
-
公开(公告)号:CN110806170A
公开(公告)日:2020-02-18
申请号:CN201911174990.X
申请日:2019-11-26
Applicant: 武汉大学
IPC: G01B7/16
Abstract: 本发明涉及一种监测高堆石坝变形的方法,包括:在高堆石坝上方设置星载InSAR,利用其对大坝整体监测以获取重点监测区域;在重点监测区域布设地基SAR以及船载SAR,利用地基SAR和船载SAR对重点区域进行进一步观测,获取相关的形变信息;在高堆石坝面板下部平行于面板方向设置变形管道及在高堆石坝内部沿高度方向设置多根水平的变形管道,利用管道机器人在变形管道中来回运动巡测获取高堆石坝的大坝面板扰度以及沉降信息;高堆石坝监测预警管理云平台获取上述的形变信息后,再结合高面板堆石坝的变形规律和三维模型实时生成高堆石坝相关的变形信息图。本发明可以对高堆石坝进行全天候、由整体到局部、由低精度到高精度、由外到内的全方位变形监测。
-
公开(公告)号:CN110069844A
公开(公告)日:2019-07-30
申请号:CN201910298582.9
申请日:2019-04-15
Applicant: 武汉大学
IPC: G06F17/50
Abstract: 本发明公开了一种考虑岩石结构特征和矿物组成的细观数值模型生成方法。能够考虑岩石的细观结构特征和矿物组成,建立反映岩石结构特征和矿物组成的细观数值模型,能够更加真实进行岩石力学数值模拟。本发明包括以下步骤:对岩石试样进行岩石结构特征分析得到矿物颗粒的尺寸、形态、矿物类型等信息;将不规则形状的矿物颗粒简化为一尺寸缩小的圆球,采用粒径膨胀法使颗粒发生重排列,获得一个较为密实的结构;然后提取颗粒空间位置和尺寸等信息,对颗粒集合体进行基于Voronoi图的空间区域划分;最后将得到的Voronoi多晶体结构进行有限元网格划分,并在矿物颗粒边界和颗粒内部插入无厚度界面单元,生成可反映岩石结构和岩相结构的有限元数值模型。
-
公开(公告)号:CN104266920B
公开(公告)日:2016-08-31
申请号:CN201410543793.1
申请日:2014-10-15
Applicant: 武汉大学
IPC: G01N3/32
Abstract: 一种动力作用下散粒料锚固效应物理模型试验装置及方法,便于开展相关领域的室内试验。其装置包括框架组件、动力加载组件和锚固实施组件。其优点在于:本发明提供了一进行动力作用下散粒料使用锚杆锚固开展锚固效应研究的装置,填补了该领域试验装置的空白;本发明的长方体框架结构简单、易于操作,长方体框架两侧为透明材质板便于在试验中观察试验现象;本发明有利于促进动力作用下散粒料锚固效应研究的室内试验的开展,从而对高堆石坝锚杆抗震提供一定理论依据,促进对高堆石坝锚杆抗震效应的进一步认识,推进国家规范的制定。
-
公开(公告)号:CN102799713A
公开(公告)日:2012-11-28
申请号:CN201210213516.5
申请日:2012-06-26
Applicant: 武汉大学
IPC: G06F17/50
Abstract: 一种堆石坝心墙水力劈裂的数值模拟方法,包括如下步骤:(1)根据室内平面应变试验获取实际心墙土料的应力应变曲线,建立颗粒离散元双轴数值模型;(2)根据颗粒离散元双轴试验确定的细观力学参数,建立心墙骨架颗粒模型;(3)利用连续介质模型建立流体模型,并对其控制方程进行离散;(4)利用心墙骨架颗粒模型和流体模型模拟水力劈裂。本发明根据室内试验获取细观参数,模拟实际心墙土料的力学性能,施加心墙的应力边界条件以及堆石坝上游的实际水压力边界条件,进行数值模拟,从细观角度判定心墙是否发生水力劈裂。根据模拟结果,从施工或设计方面提出改进措施,避免心墙水力劈裂的发生,从而对实际工程具有指导意义。
-
公开(公告)号:CN118627340B
公开(公告)日:2025-04-01
申请号:CN202410771102.7
申请日:2024-06-14
Applicant: 武汉大学
Abstract: 本发明涉及计算机领域和水工结构领域,公开了基于多专业模型集成的堆石坝变形分析集成方法,包括以下步骤:S1、利用参数反演分析方法建立堆石料本构模型,还公开了基于多专业模型集成的堆石坝变形分析系统,包括:参数反演分析模块,用于建立堆石料本构模型,以及公开了基于多专业模型集成的堆石坝变形分析设备,包括:集群管理主机,其用于负责整个设备网络的资源调配和管理。通过容器化的WebSocket技术极大程度上简化了容器之间的实时数据交换和通信,并且在一个复杂的数据处理流程中,S1步骤的输出可以即时成为S2步骤的输入,S2步骤的输出可以即时成为S3步骤的输入,基于WebSocket技术的“一次通讯,持久连接”的优势降低了服务器通讯负载。
-
公开(公告)号:CN119513328A
公开(公告)日:2025-02-25
申请号:CN202411585064.2
申请日:2024-11-07
Applicant: 武汉大学
IPC: G06F16/36 , G06F18/24 , G06F18/214 , G06F18/10 , G06F40/284 , G06F40/289 , G06F16/951 , G06N3/08
Abstract: 本发明公开一种用于领域知识抽取的水害防治实体数据增强方法及系统,方法包括:获取水害防治领域内文本数据;对获取的不同格式文本数据进行标准化处理及清洗,形成领域的原始数据集;根据领域的原始数据集,自上而下归纳领域主题概念,剖析概念关联关系,建立水害防治本体模型,根据本体模型开展数据标注;根据标注结果将每条文本数据分为实体部分与非实体部分,对实体部分与非实体部分采用相应的增强策略实施数据增强,重新组合实体部分增强结果与非实体部分增强结果,得到该条文本数据的增强数据,每条文本的增强数据组成增强数据集。
-
公开(公告)号:CN118962088A
公开(公告)日:2024-11-15
申请号:CN202410981923.3
申请日:2024-07-22
Applicant: 武汉大学
Abstract: 本发明公开了一种基于多场耦合的混凝土损伤分析方法及系统,包括:建立多场耦合模型;建立全级配混凝土细观模型;对混凝土试件分别进行自干燥试验和单轴扩散干燥试验,获得各试验条件下混凝土试件对应的各种试验参数;根据自干燥试验的试验条件和得到的各种试验参数对混凝土细观模型进行自干燥试验模拟,采用多场耦合模型计算获得模拟过程中混凝土各龄期下的力学性能演变及损伤分布;根据单轴扩散试验的试验条件和得到的试验参数对混凝土细观模型进行单轴试验模拟,采用多场耦合模型计算获得模拟过程中混凝土性能演变过程及损伤分布。本发明考虑了各物理场变量之间的耦合效应,克服了仅考虑单一因变量或物理场的缺陷。
-
公开(公告)号:CN117238407B
公开(公告)日:2024-09-17
申请号:CN202310954885.8
申请日:2023-08-01
Applicant: 武汉大学 , 华能澜沧江水电股份有限公司
IPC: G16C60/00 , E02B7/06 , G06F30/25 , G06F111/08
Abstract: 本发明提供干湿循环后不同尺寸堆石颗粒破碎强度的确定方法及装置,充分考虑干湿循环和颗粒粒径的耦合影响,得到更加符合颗粒真实破损情况的数据。方法包括:步骤1,对不同尺寸的堆石颗粒进行筛分,筛选出多组不同尺寸的堆石颗粒;步骤2,将筛选出的各组堆石颗粒分别放入干湿循环试验机中进行不同次数的干湿循环试验;步骤3,干湿循环试验完成后,对每组堆石颗粒都进行单颗粒破碎试验;步骤4,构建考虑颗粒粒径以及干湿循环次数耦合影响的堆石颗粒特征破碎强度变化模型;将步骤3获得的试验数据带入模型中,得到各拟合系数,进而得到预测模型;步骤5,采用预测模型对待预测的不同干湿循环下、不同尺寸堆石颗粒的破碎强度进行预测确定。
-
-
-
-
-
-
-
-
-