一种无标记化学发光免疫传感器及其免疫分析方法

    公开(公告)号:CN104330553B

    公开(公告)日:2016-03-09

    申请号:CN201410670552.3

    申请日:2014-11-20

    Applicant: 扬州大学

    Inventor: 杨占军 曹越 李娟

    Abstract: 本发明公开了一种无标记化学发光免疫传感器及其免疫分析方法,一种无标记化学发光免疫传感器的免疫分析方法包括如下步骤:(1)将所述免疫传感器固定在免疫微反应器后,将带抗原样品以0.5ml/min的速度注入流通池,在线温育后形成免疫复合物;(2)用缓冲液PBST以1ml/min的速度冲洗免疫复合物,除去未反应的免疫试剂;(3)将化学发光底物溶液以0.5ml/min的速度通入免疫传感器,产生的化学发光信号由光电倍增管记录。本发明以化学发光探针和无标记的抗体共固定于具有良好生物相容性的固相界面,制得该免疫传感器,结合流动注射,构建了一种廉价、快速、方便的无标记化学发光免疫分析方法。

    基于氧化锌纳米材料的牛伽马干扰素阻抗型免疫传感器的制备方法

    公开(公告)号:CN104090116A

    公开(公告)日:2014-10-08

    申请号:CN201410348998.4

    申请日:2014-07-21

    Applicant: 扬州大学

    CPC classification number: G01N33/6866 G01N33/5438

    Abstract: 基于氧化锌纳米材料的牛伽马干扰素阻抗型免疫传感器的制备方法,属于电化学免疫分析技术领域,将不同形貌、性能优良的氧化锌纳米材料修饰玻碳电极固定牛伽马干扰素抗体,制备得到新颖的电化学阻抗型免疫传感器,可将其应用于牛伽马干扰素的无标记电化学免疫分析,该免疫传感器无需标记、简单、快速、成本低、灵敏度高、重现性和稳定性好,可以用于牛结核病的早期诊断和牛细胞免疫机理的研究。

    一种基于铜铁双金属有机框架纳米酶的无标记电化学免疫传感器的制备方法及免疫分析方法

    公开(公告)号:CN114965994B

    公开(公告)日:2025-04-15

    申请号:CN202210543336.7

    申请日:2022-05-19

    Applicant: 扬州大学

    Abstract: 本发明涉及一种基于铜铁双金属有机框架纳米酶的无标记电化学免疫传感器的制备方法及免疫分析方法,首先合成纺锤形铜铁双金属有机框架纳米酶,然后再用其修饰玻碳电极界面固定抗体分子,制备得到无标记电化学免疫传感器。该铜铁双金属有机框架纳米酶具有大的比表面积,借助于链霉亲和素对生物素化的抗体较高的选择性,使抗体能够有效的固定于铜铁双金属有机框架的表面。该传感器,在邻苯二胺溶液体系中,可催化邻苯二胺氧化,产生强的电化学信号,使抗原‑抗体特异性反应形成的免疫复合物抑制了铜铁双金属有机框架纳米酶催化,而引起电化学信号强度降低。利用降低信号和抗原浓度线性关系,可快速实现对IgG的无标记高灵敏度的检测。

    一种基于Co3O4 磁性纳米粒子信号放大探针的SPR免疫传感器

    公开(公告)号:CN114778828B

    公开(公告)日:2025-04-01

    申请号:CN202210373404.X

    申请日:2022-04-11

    Applicant: 扬州大学

    Abstract: 本发明涉及免疫学分析检测技术内一种基于Co3O4磁性纳米粒子信号放大探针的SPR免疫传感器,第1步,将Co3O4磁性纳米粒子表面修饰羧基,并活化,再连接二级抗体Ab2,制得Co3O4 NPs‑Ab2纳米信号放大探针;第2步,将SPA蛋白固定于表面等离子体共振免疫传感器SPR基底,再连接捕获抗体Ab1后用牛血清白蛋白封闭,接着先后通入抗原溶液和Co3O4 NPs‑Ab2信号放大探针,温育形成三明治夹心的SPR免疫传感器。本发明的羧基化的Co3O4纳米粒子,其高折射率和高分子量可有效増强SPR信号,同时通过在外部磁场中分离和富集复杂样品中的靶标,可以极大减少未知化合物的背景干扰,具有良好的生物相容性,制备信号放大探针,结合三明治夹心法,使SPR信号增强,用于蛋白分子的高灵敏检测。

    一种SnSe@球中碗碳复合材料及其制备方法和应用

    公开(公告)号:CN117747788A

    公开(公告)日:2024-03-22

    申请号:CN202311761450.8

    申请日:2023-12-20

    Applicant: 扬州大学

    Abstract: 本发明公开了一种SnSe@球中碗碳复合材料及其制备方法和应用,该复合材料由球中碗碳材料和SnSe组成。碳材料分为内层的“碳碗”和外层的“碳空心球”,内部“碳碗”与外层球壳之间存在空腔,空腔中分布SnSe二维纳米片。SnSe@球中碗碳复合材料作为Se的宿主材料,可以应用于Na‑Se、K‑Se、Zn‑Se等电池正极材料。本发明中的SnSe@球中碗碳复合材料,其中球中碗结构碳基材料结构规整,具有密度低、比表面积高和负载位点丰富等特点,而SnSe纳米片兼具催化和吸附作用,可以有效吸附负载Se,催化Se与Se2‑之间的转化反应,对Zn‑Se电池性能提升具有积极作用。

    一种二氧化钼@二氧化钛@氮掺杂碳纳米复合材料及其锂离子电池负极的制备方法

    公开(公告)号:CN115849447B

    公开(公告)日:2023-11-07

    申请号:CN202211601937.5

    申请日:2022-12-14

    Applicant: 扬州大学

    Abstract: 本发明涉及锂离子电池材料技术领域内一种二氧化钼@二氧化钛@氮掺杂碳纳米复合材料及其锂离子电池负极的制备方法,以聚苯乙烯球为模板,无水乙醇为溶剂,以钛酸四丁酯为钛源,在乙腈和氨水存在的条件下,搅拌反应制备核壳结构的PS@TiO2纳米球,然后在氮气保护下煅烧获得中空的TiO2纳米球;再将中空的TiO2纳米球分散在去离子水中,以四水合钼酸铵为钼源,在聚乙烯吡咯烷存在的条件下水热法,在中空的TiO2纳米球内封装二氧化钼纳米粒子,得到核壳结构MoO2@TiO2纳米球;再将MoO2@TiO2纳米球与盐酸多巴胺分散液Tris缓冲液,搅拌反应制备聚多巴胺包裹的MoO2@TiO2@PDA微球,最后将MoO2@TiO2@PDA微球氮气保护下煅烧得到综合电性能优良的多孔核壳结构的二氧化钼@二氧化钛@氮掺杂碳纳米复合材料MoO2@TiO2@NC。

    一种基于Ag@Au的多孔结构的双信号纳米放大探针及其SPR免疫检测的方法

    公开(公告)号:CN112730338B

    公开(公告)日:2023-03-24

    申请号:CN202011527815.7

    申请日:2020-12-22

    Applicant: 扬州大学

    Abstract: 本发明涉及免疫学分析检测技术领域内一种基于Ag@Au的多孔结构的双信号纳米放大探针及其SPR免疫检测的方法。本发明首先以氯金酸为金源,硝酸银为银源,超纯水作为溶剂,过氧化氢为刻蚀溶剂,合成了多孔Ag@Au核壳纳米粒子复合材料,再利用MUA将Ag@Au核壳纳米粒子表面羧基功能化,然后将二级抗体(Ab2)固定于其表面得到多孔结构的双信号放大探针p‑Ag@Au‑Ab2。在采用该探针进行肿瘤标志物的SPR检测,在SPR的芯片表面固定一级抗体Ab1,用牛血清蛋白封闭再结合检测抗原,并将p‑Ag@Au‑Ab2与抗原结合,再通入苯胺和H2O2的混合溶液,多孔的p‑Ag@Au‑Ab2核壳纳米粒子具有过氧化物酶模拟酶性质,可在SPR芯片表面催化H2O2氧化苯胺反应生成聚苯胺,形成二次SPR信号放大。

    一种无标记化学发光免疫传感器及其免疫分析方法

    公开(公告)号:CN104330553A

    公开(公告)日:2015-02-04

    申请号:CN201410670552.3

    申请日:2014-11-20

    Applicant: 扬州大学

    Inventor: 杨占军 曹越 李娟

    CPC classification number: G01N33/552 G01N21/76

    Abstract: 本发明公开了一种无标记化学发光免疫传感器及其免疫分析方法,一种无标记化学发光免疫传感器的免疫分析方法包括如下步骤:(1)将所述免疫传感器固定在免疫微反应器后,将带抗原样品以0.5ml/min的速度注入流通池,在线温育后形成免疫复合物;(2)用缓冲液PBST以1ml/min的速度冲洗免疫复合物,除去未反应的免疫试剂;(3)将化学发光底物溶液以0.5ml/min的速度通入免疫传感器,产生的化学发光信号由光电倍增管记录。本发明以化学发光探针和无标记的抗体共固定于具有良好生物相容性的固相界面,制得该免疫传感器,结合流动注射,构建了一种廉价、快速、方便的无标记化学发光免疫分析方法。

    一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器

    公开(公告)号:CN114790585B

    公开(公告)日:2023-11-24

    申请号:CN202210420721.2

    申请日:2022-04-21

    Applicant: 扬州大学

    Abstract: 本发明涉及纳米酶材料领域内一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器,首先通过静电纺丝构筑材料的方法,以金属离子为金属盐,有机化合物为有机配体,高分子聚合物作为助纺材料同时也作为MOFs材料生长的位点,调节金属盐和配体以及助纺材料的比例,控制调节静电纺丝参数,以调控MOFs材料在一维纳米线上的有序排布,实现MOFs材料的定向生长和形貌控制,制备得到MOFs纳米酶。并进一步将MOFs纳米酶制备得到葡萄糖比色传感器。进行葡萄糖检测时,利用纳米酶的高催化活性,以催化TMB或邻苯二胺发生显色反应,实现对葡萄糖的快速检测,并且检测限范围更低。

Patent Agency Ranking