-
公开(公告)号:CN106041110A
公开(公告)日:2016-10-26
申请号:CN201610393514.7
申请日:2016-05-31
Applicant: 安徽工业大学
CPC classification number: B22F9/14 , B22F1/0018 , B22F1/025 , B22F2999/00 , B82Y30/00 , B82Y40/00 , B22F2202/13
Abstract: 本发明公开了一种Co@C@g‑C3N4纳米复合物及其制备方法和应用,属于纳米材料制备技术领域。该纳米复合物材料微观结构为Co@C核壳结构纳米胶囊嵌入g‑C3N4纳米片中。本发明采用等离子电弧放电法,将钴粉和三聚氰胺粉按一定原子百分比压制成块体作为阳极靶材材料,采用石墨作为阴极材料,引用氩气和甲烷作为工作气体,阴极石墨电极与阳极钴‑三聚氰胺粉末块体之间保持一定距离,阳极与阴极之间起电弧放电,即得Co@C@g‑C3N4纳米复合物。用该纳米复合物制得的吸波涂层在2‑18GHz范围内具有良好的微波吸收性能。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN106001551A
公开(公告)日:2016-10-12
申请号:CN201610397247.0
申请日:2016-05-31
Applicant: 安徽工业大学
CPC classification number: B22F1/02 , B22F1/0018 , B22F9/14 , B82Y30/00 , B82Y40/00
Abstract: 本发明公开了一种Ni@C@g‑C3N4纳米复合物及其制备方法和应用,属于纳米材料制备技术领域。该纳米复合物材料微观结构为Ni@C核壳结构纳米胶囊嵌入g‑C3N4纳米片中,其采用等离子电弧放电法,将镍粉和三聚氰胺粉按一定原子百分比压制成块体作为阳极靶材材料,采用石墨作为阴极材料,引用氩气和甲烷作为工作气体,阴极石墨电极与阳极镍‑三聚氰胺粉末块体之间保持一定距离,阳极与阴极之间起电弧放电,即得Ni@C@g‑C3N4纳米复合物,该纳米复合物在2‑18GHz范围内具有良好的微波吸收性。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN104347876B
公开(公告)日:2016-08-24
申请号:CN201410557617.3
申请日:2014-10-20
Applicant: 安徽工业大学
Abstract: 本发明公开了一种带有硫化铝(Al2S3)外壳的二硫化钼(MoS2)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为MoS2纳米颗粒,外壳为Al2S3层;所述MoS2内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将钼粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,引用氩气和硫化氢气作为工作气体,阴极与阳极之间保持一定距离,阴阳极之间起电弧放电,即得带有Al2S3外壳的MoS2纳米粉末材料。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN104310494B
公开(公告)日:2016-08-24
申请号:CN201410515495.1
申请日:2014-09-29
Applicant: 安徽工业大学
Abstract: 本发明公开了一种镨钴氧化物纳米棒及其制备方法,属于纳米材料制备技术领域。本发明的镨钴氧化物纳米棒由PrCoO3单相构成,长度约1μm,直径约50nm。其制备方法的要点是:将钴盐、镨盐、表面活性剂按一定摩尔比溶入水和聚二醇混合溶剂,其中水与聚二醇的体积比为100:10~20,然后加热到80~100℃,搅拌时间至少1h;然后将水合肼和氢氧化物依次加入,其中水合肼和钴盐的摩尔比为1~3:10,氢氧化物与钴盐摩尔比应大于3:2,反应时间不少于30分钟;最后,清洗烘干,得到目标产物。本发明制备温度低、无需添加模版、制备过程简单、无后处理工序及成本低、环境友好,易于实现工业化生产。
-
公开(公告)号:CN104402066B
公开(公告)日:2016-05-11
申请号:CN201410513320.7
申请日:2014-09-29
Applicant: 安徽工业大学
Abstract: 本发明公开了一种铽钴氧化物纳米棒及其制备方法,属于纳米材料制备技术领域。本发明的铽钴氧化物纳米棒由TbCoO3单相构成,长度约1μm,直径约50nm。其制备方法的要点是:将钴盐、铽盐、表面活性剂按一定摩尔比溶入水和聚二醇混合溶剂,其中水与聚二醇体积比为100:10~20,然后加热到80~100℃,搅拌时间至少1h;然后将水合肼和氢氧化物依次加入,其中水合肼和钴盐摩尔比为1~3:10,氢氧化物和钴盐摩尔比大于3:2,反应时间不少于30分钟;最后,清洗烘干,得到目标产物。本发明制备温度低、无需添加模版、制备过程简单、无后处理工序及成本低、环境友好,易于实现工业化生产。
-
公开(公告)号:CN104386766B
公开(公告)日:2015-11-11
申请号:CN201410557631.3
申请日:2014-10-20
Applicant: 安徽工业大学
Abstract: 本发明公开了一种带有硫化铝(Al2S3)外壳的硫化镍(NiS)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为NiS纳米颗粒,外壳为Al2S3层;所述NiS纳米颗粒内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将镍粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,引用氩气和硫化氢气作为工作气体,阴极与阳极之间保持一定距离,阴阳极之间起电弧放电,即得带有Al2S3外壳的NiS纳米粉末材料。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN104261458B
公开(公告)日:2015-09-23
申请号:CN201410557601.2
申请日:2014-10-20
Applicant: 安徽工业大学
Abstract: 本发明公开了一种带有硫化铝(Al2S3)外壳的硫化铜(CuS)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为CuS纳米颗粒,外壳为Al2S3层;所述CuS纳米颗粒内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将铜粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,引用氩气和硫化氢气作为工作气体,阴极与阳极之间保持一定距离,阴阳极之间起电弧放电,即得带有Al2S3外壳的CuS纳米粉末材料。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN103192069B
公开(公告)日:2015-06-03
申请号:CN201310128781.8
申请日:2013-04-15
Applicant: 安徽工业大学
Abstract: 本发明提供一种用于低温磁制冷的稀土-铜-铝纳米颗粒及其制备方法,属于磁性纳米材料领域。该稀土-铜-铝纳米颗粒为以下通式的化合物:RCuAl,其中R为Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,所述稀土-铜-铝纳米颗粒,不具有核壳结构,且粒径为10~40nm。本发明采用等离子电弧放电法,将稀土粉、铜粉和铝粉压制成块体作为等离子电弧炉的阳极材料,采用钨金属或铌金属作为等离子电弧炉的阴极材料,经过电弧放电反应后得稀土-铜-铝纳米颗粒。本发明制备出的稀土-铜-铝纳米颗粒,在低温区具有大磁熵变和高磁制冷能力,同时本发明制备方法工艺简单且环境友好。
-
公开(公告)号:CN104386765A
公开(公告)日:2015-03-04
申请号:CN201410557689.8
申请日:2014-10-20
Applicant: 安徽工业大学
Abstract: 本发明公开了一种带有硫化铝(Al2S3)外壳的硫化亚铁(FeS)纳米粉末材料及其制备方法,属于纳米材料制备技术领域。该纳米粉末材料为核壳结构,内核为FeS纳米颗粒,外壳为Al2S3层;所述FeS内核的粒径为10~100nm,所述Al2S3外壳层为非晶Al2S3层,其厚度为1~10nm。本发明采用等离子电弧放电法,将铁粉和铝粉按一定原子百分比压制成块体作为阳极材料,采用石墨作为阴极材料,引用氩气和硫化氢气作为工作气体,阴极与阳极之间保持一定距离,阴阳极之间起电弧放电,即得带有Al2S3外壳的FeS纳米粉末材料。本发明制备过程简单、无后处理工序及成本低,易于实现工业化生产。
-
公开(公告)号:CN104310492A
公开(公告)日:2015-01-28
申请号:CN201410514824.0
申请日:2014-09-29
Applicant: 安徽工业大学
Abstract: 本发明公开了一种钕钴氧化物纳米棒及其制备方法,属于纳米材料制备技术领域。本发明的钕钴氧化物纳米棒由NdCoO3单相构成,长度约1μm,直径约50nm。其制备方法的要点是:将钴盐、钕盐、表面活性剂按一定摩尔比溶入水和聚二醇混合溶剂,其中水与聚二醇体积比为100:10~20,然后加热到80~100℃,搅拌时间至少1h;然后将水合肼和氢氧化物依次加入,其中水合肼和钴盐摩尔比为1~3:10,氢氧化物和钴盐摩尔比大于3:2,反应时间不少于30分钟;最后,清洗烘干,得到目标产物。本发明制备温度低、无需添加模版、制备过程简单、无后处理工序及成本低、环境友好,易于实现工业化生产。
-
-
-
-
-
-
-
-
-