基于区分性字典与分类器联合学习的说话人识别方法

    公开(公告)号:CN115512708A

    公开(公告)日:2022-12-23

    申请号:CN202211218439.2

    申请日:2022-10-05

    Abstract: 本发明公开了一种基于区分性字典与分类器联合学习的说话人识别方法,该方法在训练数据中增加分类器参数和正则化参数,提高了传统说话人识别系统的正确率,是在传统字典学习基础上的创新。本发明在训练阶段,首先对语音提取i‑vector,将其和One‑Hot拼接后作为稀疏分解的输入;然后初始化字典和分类器参数,获取i‑vector在字典上的稀疏表示;最后利用K均值‑奇异值分解(KSVD)算法更新字典。在识别阶段,首先利用字典与其二范数的商作为识别阶段的字典,同理得到分类器参数;然后计算测试语音在字典上的稀疏表示,分类器参数和稀疏表示的积是说话人在不同字典上的得分;最后判断得分最高说话人是否是测试说话人。本发明可以应用于说话人识别领域。

    基于社区发现的集体社交行为的提取方法及系统

    公开(公告)号:CN114707044A

    公开(公告)日:2022-07-05

    申请号:CN202111638174.7

    申请日:2021-12-29

    Abstract: 本发明公开了一种基于社区发现的集体社交行为的提取方法及系统,其中,该方法包括:抓取社交网络中多个用户发表的帖子作为初始数据集,并对其进行预处理得到数据集;利用LDA模型处理数据集,生成主题分布;构造基于稀疏表达的相似度计算函数求解每个帖子与主题分布的相似度,得到亲和矩阵;基于自适应损失函数构建社区发现算法,确定目标函数;使用交替迭代法使目标函数不断学习,得到亲和矩阵中同一主题下每个帖子之间的连通分量,以构建目标相似度矩阵确定社区结构;引入node2vec模型将社区结构可视化,根据社区结构中中节点的分布情况提取集体社交行为。该方法可以准确提取明显不同于个体语义行为特征的集体社交行为,且鲁棒性高。

    基于图结构整体和部分的社交网络意见领袖挖掘方法

    公开(公告)号:CN114492455A

    公开(公告)日:2022-05-13

    申请号:CN202210072113.7

    申请日:2022-01-21

    Abstract: 本发明公开了一种基于图结构整体和部分的社交网络意见领袖挖掘方法,属于社交网络分析技术领域,包括:爬取社交网络中用户语义信息并进行预处理;利用LDA模型将处理后的语义信息抽象为主题,提取关键字,将主题和关键字作为特征属性;将LDA模型生成的K个主题作为向量空间,堆叠成数据矩阵建立用户社交网络;利用基于密度的社区发现方法对用户社交网络进行社区划分,得到社区结构;基于图的整体结构计算社区结构中所有用户节点整体、局部影响力;融合所有用户节点整体、局部影响力进行影响力评估,得到所有用户节点影响力评分,将排在预设阈值前的用户节点作为意见领袖。该方法考虑因素的多样性保证了网络意见领袖挖掘的准确性和有效性。

    基于事件检测的微博网络情感社区识别方法

    公开(公告)号:CN110347897B

    公开(公告)日:2021-09-21

    申请号:CN201910577138.0

    申请日:2019-06-28

    Abstract: 本发明是基于事件检测的微博网络情感社区识别方法。本发明基于Python爬虫爬取微博网络用语的数据,提取微博网络中的社会热点事件,构造事件热点评估函数;度量微博用户对社会热点事件的情感极性,生成微博用户对多个社会热点事件的情感极性标签;初始化微博用户的情感极性标签,构造社区标签更新迭代规则,直至标签收敛时终止循环,将具有相同标签的节点划分到同一社区。本发明解决目前社区识别算法无法刻画用户的情感倾向性,导致输出的社区结果内聚性较低、稳定性不足,在网络演化过程中容易引发社区分裂的问题。本发明保证了输出的社区结果具有较高的内聚性及稳定性,对网络演化产生的网络结构及属性改变具有较高的适应性。

    一种基于话题影响力渗流的语义社交网络社区发现方法

    公开(公告)号:CN112329473A

    公开(公告)日:2021-02-05

    申请号:CN202011126371.6

    申请日:2020-10-20

    Abstract: 本发明公开了一种基于话题影响力渗流的语义社交网络社区发现方法。步骤1:构造语义社交网络节点的语义空间坐标表示;步骤2:构造步骤1的同时构造基于渗流力学的话题影响力渗流微分方程;步骤3:根据步骤2的话题影响力渗流微分方程,求解话题影响力偏微分方程;步骤4:根据步骤3制定生成社区的博弈规则;步骤5:在步骤4的博弈规则选取话题影响力最大的种子节点作为影响力渗流的初始非均衡节点;步骤6:利用步骤4的博弈规则与步骤5的初始非均衡节点生成社交网络社区结构。现有方法仅以话题的相似性作为社区的生成标准会降低社区内部节点的一致性,社区内聚性略显不足。

    基于优化三元组损失的语种识别模型训练方法及识别方法、系统

    公开(公告)号:CN118824234A

    公开(公告)日:2024-10-22

    申请号:CN202410793099.9

    申请日:2024-06-19

    Abstract: 基于优化三元组损失的语种识别模型训练方法及识别方法、系统,属于语音处理和生物识别技术领域。为了解决利用现有的训练方式对语种识别模型进行训练时存在损失函数针对语种识别的数据训练有效性不高的问题,本发明针对识别模型进行训练时,采用三元组损失函数并对其进行改进,在损失增加了对正负样本距离的计算,能够有效提高训练效果;此外本发明在计算改进的三元组损时,采用改进的困难选择策略选择样本,改进的困难选择策略:在选取正样本时,选择离锚点距离最远的正样本;选择负样本时,用随机选择的方式。

    基于双向注意力残差网络的语音欺诈检测方法

    公开(公告)号:CN115910073B

    公开(公告)日:2024-09-20

    申请号:CN202211186472.1

    申请日:2022-09-27

    Abstract: 本发明提出了一种基于双向注意力残差网络的语音欺诈检测方法,能够有效提升欺诈语音检测系统的识别性能,防止欺诈语音通过自动说话人验证系统(ASV)。在训练过程中,本发明首先对语音进行预处理,并提取常数Q变换(CQT)特征矩阵,将其作为残差网络(ResNet)的输入,利用ResNet提取浅层特征,然后将此特征输入双向注意力网络,以区分特征中不同维度的重要程度,从而得到区分性更强的特征表示。在测试阶段,利用训练好的网络模型作为真实语音与欺诈语音的分类器,对语音进行打分,根据打分结果对真实语音与欺诈语音进行分类。实验结果表明,本发明方法能够明显提升欺诈检测系统的性能,保护ASV系统免受不法用户的侵害。本发明可应用在语音处理和生物识别领域。

    用于医学图像中分割挑战性区域的自适应级联解码器

    公开(公告)号:CN118644499A

    公开(公告)日:2024-09-13

    申请号:CN202410702041.9

    申请日:2024-06-01

    Abstract: 医学图像分割是各种疾病诊断和制定治疗计划的关键步骤之一。它有助于检测和定位图像中的病灶区域,可以快速识别肿瘤、癌变等病变区域的潜在存在,帮助医生快速准确地诊断。心脏、胰腺等作为公认的挑战性区域,由于其形态、位置以及周围组织的相似性,一直以来是医学图像分割的难点。本发明公开了一种基于CNN‑Transformer混合的模型。该模型特有的自适应级联解码器能根据不同的目标动态地调整模型的参数;MSC模块可以抑制背景区域突出目标器官;ADA模块克服了医学图像中对比度低和边缘模糊的问题;多阶段特征融合解决了最终预测图语义信息单一的问题。使用DICE指标测试模型的准确性,评估结果表明,本发明提出的模型在ACDC和Synapse多器官数据集上表现出优异的性能。

Patent Agency Ranking