-
公开(公告)号:CN111930946A
公开(公告)日:2020-11-13
申请号:CN202010832816.6
申请日:2020-08-18
Applicant: 哈尔滨工程大学
IPC: G06F16/35 , G06K9/62 , G06F40/205
Abstract: 一种基于相似性度量的专利分类方法,它属于文本分类技术领域。本发明解决了采用现有的专利分类方法对专利分类的准确率低的问题。本发明考虑专利说明书摘要的特征,将CHI统计量和余弦相似度相结合后,再结合IPC分类号的相似性,提出一种基于混合相似度的专利分类方法。针对权利要求书,提出一种基于权利要求书相似度的专利分类方法。根据抽取出来的SAO-x多维结构,计算权利要求书相似度,基于相似度结果采用KNN分类算法对专利进行分类。与现有的专利分类方法相比,本发明进行专利自动分类的准确率达到70%以上,降低了人工分类在主观层面上产生的分类误差。本发明可以应用于文本分类技术领域。
-
公开(公告)号:CN111626341A
公开(公告)日:2020-09-04
申请号:CN202010397828.0
申请日:2020-05-12
Applicant: 哈尔滨工程大学
Abstract: 一种面向水下目标识别的特征级信息融合方法,它属于水下目标识别技术领域。本发明解决了原始水下声音数据本身携带的目标特性有限,采用专家特征提取方法很难从原始数据中提取出有效的特征,且采用现有方法对提取出的特征信息融合效果不佳的问题。本发明对采集的原始声音数据进行处理,使处理过的数据不仅包含目标水声特性,还包含了目标方位特性与速度变化特性。再采用一个端到端的深度神经网络完成后续的特征提取和信息融合工作,克服了采用专家特征提取方法很难从原始数据中提取出有效特征的问题,而且通过实验证明了本发明特征信息融合方法的有效性。本发明可以应用于水下目标识别。
-
公开(公告)号:CN111460147A
公开(公告)日:2020-07-28
申请号:CN202010214338.2
申请日:2020-03-24
Applicant: 哈尔滨工程大学
IPC: G06F16/35 , G06F16/33 , G06F40/216 , G06F40/126
Abstract: 一种基于语义增强的标题短文本分类方法,它属于文本分类技术领域。本发明解决了现有方法对情报数据挖掘中的标题短文本分类的精确度低的问题。本发明对采集的标题短文本以及标题短文本对应的文章内容进行预处理后,将预处理后的文章内容作为样本数据的扩充语料,另外还通过特征检索的方式获得了标题短文本的扩充语料,并且利用验证集对模型参数寻优时获得的优质数据集对训练集进行更新,即本发明对标题短文本进行了CSE编码语义增强和ASE自主语义增强,通过语义增强技术对标题短文本进行分类,可以有效提高FastText分类器在短文本分类上的精确度,分类精度将有近30%的大幅度提升。本发明可以应用于短文本分类。
-
公开(公告)号:CN111001161A
公开(公告)日:2020-04-14
申请号:CN201911351336.1
申请日:2019-12-24
Applicant: 哈尔滨工程大学
Abstract: 一种基于二阶反向传播优先级的游戏策略获得方法,它属于智能化决策获取技术领域。本发明解决了在游戏策略的指挥决策过程中存在的数据利用率低以及策略质量低的问题。本发明方法结合了DPSCRM方法和BPTM方法,通过样本序列的累计奖赏值构建第一级奖赏值,可以获得高质量的策略;基于TD-error构建优先级可以反向衰减传播的第二级优先级,可以提升数据利用率。本发明可以应用于游戏策略的获取。
-
公开(公告)号:CN110919659A
公开(公告)日:2020-03-27
申请号:CN201911351334.2
申请日:2019-12-24
Applicant: 哈尔滨工程大学
IPC: B25J9/16
Abstract: 一种基于DDGPES的机器人控制方法,涉及一种机器人的控制方法,属于控制领域。本发明是为了解决现有的机器人控制方法中存在策略参数调整和均匀采样“无效”动作问题,以及Agent容易陷入局部最优的问题。本发明将机器人的控制决策系统记为智能体Agent;针对Agent,利用DQN网络进行决策,进而实现机器人进行控制。DQN网络应用中,结合DDES策略和GPES策略,GPES策略通过计算difference的值,根据Agent学习的过程动态的调整ε-greedy策略中的ε参数,以1-ε的概率执行argmaxa∈A Q(s,ai)动作,Agent以ε的概率进行探索。同时,采用DDES探索利用策略确定损失函数LD=L-Eπ′∈Π′[αD(π,π′)]。主要用于机器人的控制。
-
公开(公告)号:CN110378489A
公开(公告)日:2019-10-25
申请号:CN201910695772.4
申请日:2019-07-30
Applicant: 哈尔滨工程大学
Abstract: 基于实体超平面投影的知识表示学习模型,本发明涉及知识表示学习模型。本发明的目的是为了解决现有现有的知识表示学习模型大部分都只关注知识图谱的结构化信息,仅仅利用知识三元组来学习实体以及关系的表示,却忽略了实体的文本描述中可能蕴含的一些有用信息,导致处理任务时准确率低的问题。过程为:步骤一、将实体的描述文本处理成矩阵形式;步骤二、将步骤一得到的矩阵形式的文本输入到卷积神经网络中,得到实体描述文本的特征向量;步骤三、利用步骤二得到的特征向量建立EHP模型,得到实体以及关系的最终向量表示。本发明用于自然语言处理领域。
-
公开(公告)号:CN110147843A
公开(公告)日:2019-08-20
申请号:CN201910430437.1
申请日:2019-05-22
Applicant: 哈尔滨工程大学
IPC: G06K9/62
Abstract: 本发明提供基于度量学习的语音时序数据相似性度量方法,属于数据分类技术领域。本发明首先获取语音时序数据;结合马氏距离和斯皮尔曼线性相关性系数计算语音时序数据的局部距离,然后使用动态时间弯曲算法得到动态时间弯曲距离的表达式;再根据PGDM度量学习框架建立以马氏矩阵为参数的损失函数;求解损失函数计算出针对当前训练集样本的马氏矩阵;最后将步骤四中求得的马氏矩阵代入动态时间弯曲距离的表达式,得到每两个语音时序数据样本的相似性度量。本发明解决了现有语音时序数据相似性度量不准确的问题。本发明可用于语音时序数据的相似性度量。
-
-
-
-
-
-