一种高能量密度的电极材料及其制备方法

    公开(公告)号:CN108010741B

    公开(公告)日:2019-05-28

    申请号:CN201711237497.9

    申请日:2017-11-30

    CPC classification number: Y02E60/13

    Abstract: 本发明提供一种高能量密度的电极材料及其制备方法,涉及电化学技术领域。一种高能量密度的电极材料,包括金属基体和形成于所述金属基体表面的复合金属氧化物涂层,复合氧化物涂层包括SnO2、Co3O4和RuO2,其中,Sn、Co和Ru的摩尔比为1~4:2~5:4。其制备方法为:对金属基体进行刻蚀,并配置得到Sn、Co和Ru的复合金属盐溶液,将复合金属盐溶液涂在金属基体上,在280‑300℃条件下热氧化处理20~50min。制备方法简单,易于操作,制得的电极材料有效减少了钌的用量,具有很高的比电容值,具有广阔的市场应用前景。

    一种钛酸蚀废液和废旧钛材的回收方法

    公开(公告)号:CN107986326B

    公开(公告)日:2019-05-28

    申请号:CN201711234361.2

    申请日:2017-11-30

    Abstract: 本发明提供一种钛酸蚀废液和废旧钛材的回收方法,涉及环保技术领域。将废旧钛材置于钛酸蚀废液中,加热,得到絮凝状沉淀物;然后进行分离、干燥得到干燥产物;干燥产物在400‑850℃条件下热处理0.5‑15h,得到纳米二氧化钛。将废旧钛材和钛酸蚀废液同时进行再利用,制备成价值更高的纳米TiO2粉体材料,工艺简单,无需消耗大量的氨水等中和剂,成本低,兼具经济效益和社会效益。

    一种超级电容器电极材料及其制备方法

    公开(公告)号:CN107818875B

    公开(公告)日:2019-05-28

    申请号:CN201711239825.9

    申请日:2017-11-30

    CPC classification number: Y02E60/13

    Abstract: 本发明提供一种超级电容器电极材料及其制备方法,涉及电化学技术领域。一种超级电容器电极材料,包括金属基体和形成于金属基体表面的复合金属氧化物涂层,复合氧化物涂层包括MnO2、Co3O4和RuO2,其中,Mn、Co和Ru的摩尔比为1~4:2~5:4。其制备方法为:对金属基体进行刻蚀,并配置得到Mn、Co和Ru的复合金属盐溶液,将复合金属盐溶液涂在金属基体上,在290‑310℃条件下热氧化处理30~50min。制备方法简单,易于操作,制得的电极材料有效减少了钌的用量,具有很高的比电容值,具有广阔的市场应用前景。

    一种低温下制备钽表面钨功能涂层的方法

    公开(公告)号:CN105714243B

    公开(公告)日:2019-05-28

    申请号:CN201610272362.5

    申请日:2016-04-28

    Abstract: 一种低温下制备钽表面钨功能涂层的方法,包括以下步骤:S1,将基体表面抛光处理,所述基体包括钽、钽合金或其组合;S2,将抛光后的基体埋入包埋渗剂中反应,其中包埋温度为240‑280℃,保温时间为1‑8h,所述包埋渗剂包括均匀分散的WCl6粉、活化剂和Al2O3粉,且所述包埋渗剂中WCl6粉的比例为30‑50wt.%;S3,保温结束后,清洗包埋后的基体并真空干燥。本发明采用包埋法,基体与包埋渗剂在240‑280℃发生扩散反应,从而制得钨功能涂层。基体与钨功能涂层结合好,具有功能涂层均匀致密的优点,且无需采用高温或加压的方法获得涂层,降低了对设备的要求,适合规模化生产。

    一种纳米碳氮化钛粉末的制备方法

    公开(公告)号:CN106241756B

    公开(公告)日:2018-10-23

    申请号:CN201610641498.9

    申请日:2016-08-08

    Abstract: 本发明涉及一种纳米碳氮化钛粉末的制备方法,包括水解制备前驱体和渗氮两个主要步骤。本发明以偏钛酸和活性炭粉末为原料,以水解溶胶为前驱体,颗粒更容易分散,制备的粉末更加细化;本发明所述的纳米碳氮化钛粉末的制备方法降低渗氮反应温度,节能环保;过程中无需使用氢气等易燃气体,工艺安全简单。

    一种双离子掺杂正极材料、制备方法及电池

    公开(公告)号:CN115818719B

    公开(公告)日:2024-07-19

    申请号:CN202211599304.5

    申请日:2022-12-12

    Abstract: 本申请公开了一种双离子掺杂正极材料、制备方法及电池,涉及电池材料技术领域。该双离子掺杂正极材料的制备方法,包括:将硝酸锰、锂源、铜源和燃料溶解于水中,搅拌混合得到混合液;将所述混合液加热燃烧20~30min后,静置,冷却得到反应物;对所述反应物进行研磨,得到双离子掺杂正极材料。该材料通过低温燃烧合成得到,燃烧反应速度快、操作工艺简单成本低,易于实现工业化生产。且通过金属Cu和Li进行双离子掺杂,在双离子的协同作用下,能够明显增强正极材料的电导率,并表现出更好的结构稳定性。

    一种氮化铝氮化硼复合陶瓷及其制备方法

    公开(公告)号:CN116283305A

    公开(公告)日:2023-06-23

    申请号:CN202211589748.0

    申请日:2022-12-12

    Abstract: 本发明涉及一种氮化铝氮化硼复合陶瓷及其制备方法,包括如下制备步骤:步骤S10,将氮化铝粉末、氮化硼粉末、氧化钙粉末和氧化钇粉末混合,得到的混合粉末装入球磨罐中,同时加入磨球和溶剂进行球磨,形成粉末浆料;步骤S20,将所述粉末浆料进行真空干燥,形成复合粉末;步骤S30,将所述复合粉末在保护气氛下进行热压烧结。该制备方法可以有效去除了产品杂质,显著降低了氧含量,净化了氮化铝晶界,制得的氮化铝氮化硼复合陶瓷拥有优异的导热性能,可以广泛运用于大功率LED器件和5G通讯等复杂形状的对导热性能要求高的散热器件领域。

Patent Agency Ranking