一种变压器声纹信号去噪方法

    公开(公告)号:CN119441743A

    公开(公告)日:2025-02-14

    申请号:CN202510028699.0

    申请日:2025-01-08

    Abstract: 本发明公开了一种变压器声纹信号去噪方法,包括如下步骤:使用声音采集装置采集变压器声纹信号;采用改进山猫优化算法对时变滤波经验模态分解的带宽阈值和B样条阶数进行优化,再使用优化后的时变滤波经验模态分解将采集到的变压器声纹信号分解成本征模态函数;采用滑动窗对本征模态函数进行分段截取,并且将截取后的本征模态函数构建成三阶信号张量;将构建的三阶信号张量输入贝叶斯高斯张量分解模型中进行分解重构,再根据张量构造逆过程将重构后的三阶信号张量还原成一维向量;本发明运用改进后的山猫优化算法优化时变滤波经验模态分解的参数,避免了分解时的混叠现象。

    一种图像和点云融合的轨道弹条扣件缺陷全面检测方法

    公开(公告)号:CN117830199B

    公开(公告)日:2024-10-18

    申请号:CN202310400655.7

    申请日:2023-04-14

    Abstract: 本发明公开了一种图像和点云融合的轨道弹条扣件缺陷全面检测方法,其涉及机器视觉缺陷检测及大数据处理技术领域。该方法包括:获取包含弹条扣件的轨道三维点云和对应的RGB深度图像;从RGB深度图像中检测出外观缺陷扣件和外观正常扣件;根据RGB深度图像和三维点云之间的映射关系分割出外观正常扣件的三维点云,并从外观正常扣件的点云中分割出弹条三维点云数据和绝缘垫块三维点云数据;从弹条点云数据中提取弹条中部区域骨架点和最低点,计算最低点到绝缘垫块所在平面的距离,通过距离判断外观正常扣件的松、紧及正常状态。本发明通过将二维图像与三维点云的融合,可以快速全面检测扣件缺陷,还能够降低轨道检测硬件的成本,提高轨道维护效率。

    基于时间序列信号和压缩卷积神经网络的伤损识别方法

    公开(公告)号:CN111563455B

    公开(公告)日:2023-07-11

    申请号:CN202010380752.0

    申请日:2020-05-08

    Abstract: 本发明公开了一种基于时间序列信号和压缩卷积神经网络的伤损识别方法,包括输入信号预处理和网络剪枝,首先采用泛谐波调频小波变换将表征伤损的一维时序信号变换到二维时频空间;然后以VGG16作为基础架构,采用添加BN层、全连接层轻量化、以泰勒准则为评判标准的滤波器排序、删除卷积层低贡献率滤波器等复合剪枝技术,构建压缩网络。通过脉冲涡流检测伤损信号验证,本发明提供的方法无需进行特征提取,且相对于VGG16架构,准确率增加到99.1%,运行时间降到7%,可广泛用于无损检测领域。

Patent Agency Ranking