-
公开(公告)号:CN115623540B
公开(公告)日:2023-10-03
申请号:CN202211409140.5
申请日:2022-11-11
Applicant: 南京邮电大学
IPC: H04W28/08 , H04W28/084 , H04W24/02
Abstract: 本发明涉及一种移动设备的边缘优化卸载方法,属于移动边缘计算和无线通信技术领域,该方法包括:获取目标区域内边缘服务器和移动设备的相关信息;获取第x+1轮决策中,状态为s情况下移动设备选择最佳动作时得到的最小期望回报vx+1(s)以及第x轮决策中,状态为s情况下移动设备选择最佳动作时得到的最小期望回报vx(s),将|vx+1(s)‑vx(s)|与固定值ε进行比较;根据比较结果输出最佳卸载决策π*(s);移动设备根据最佳卸载决策π*(s)选择相应的边缘服务器进行任务卸载。本申请提供的方法通过一系列运算获取最佳卸载决策,以及根据最佳卸载决策选择相应的边缘服务器进行任务卸载,降低了边缘服务器卸载时延以及卸载能耗的加权和,提高了移动设备边缘卸载的效率。
-
公开(公告)号:CN116723017A
公开(公告)日:2023-09-08
申请号:CN202310691253.7
申请日:2023-06-12
Applicant: 南京邮电大学
Abstract: 本发明涉及通信技术领域,公开了一种具有恶意参与者攻击检测的联邦学习双层激励机制,包括:联邦学习的中心服务器制定初始激励策略,促使其周围的客户端在不共享自己本地私有数据的情况下,根据激励策略选择最优本地计算频率;通过夏普利值评估参与联邦学习的各个客户端对全局模型训练的贡献值,以识别恶意客户端并分配激励报酬;通过联邦学习双层激励机制优化激励分配策略。本发明的联邦学习双层激励机制可以使得服务器通过有限的激励预算,合理的激励分配策略来达到更高的全局模型训练精度。在中心服务器评估客户端参与联邦学习贡献大小的同时,识别并拒绝恶意客户端参与联邦学习的全局模型训练,从而进一步加强了联邦学习的安全性和可靠性。
-
公开(公告)号:CN116390124A
公开(公告)日:2023-07-04
申请号:CN202310340504.7
申请日:2023-03-31
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于无人机辅助的去蜂窝大规模MIMO系统的资源优化方法。在无人机辅助的去蜂窝大规模MIMO系统场景中,无人机作为空中接入点和地面AP点联合为地面用户提供服务,该方法具体设计包括设计基于空‑地AP联合服务的用户调度规则;根据调度规则,设计基于空‑地联合服务的通信模型;设计公平的资源分配方案,包括用户调度方案、无人机的位置部署方案、用户功率分配方案,最大化上述通信模型的用户最小下行速率,最后通过块坐标下降和连续凸优化技术等优化求解方法验证所提出的效用模型的可行性。本发明能够根据当前用户和地面资源分布情况,提出包括无人机在内的最优资源分配策略,实现地面用户服务的无盲点覆盖。
-
公开(公告)号:CN115623540A
公开(公告)日:2023-01-17
申请号:CN202211409140.5
申请日:2022-11-11
Applicant: 南京邮电大学
IPC: H04W28/08 , H04W28/084 , H04W24/02
Abstract: 本发明涉及一种移动设备的边缘优化卸载方法,属于移动边缘计算和无线通信技术领域,该方法包括:获取目标区域内边缘服务器和移动设备的相关信息;获取第x+1轮决策中,状态为s情况下移动设备选择最佳动作时得到的最小期望回报vx+1(s)以及第x轮决策中,状态为s情况下移动设备选择最佳动作时得到的最小期望回报vx(s),将|vx+1(s)‑vx(s)|与固定值ε进行比较;根据比较结果输出最佳卸载决策π*(s);移动设备根据最佳卸载决策π*(s)选择相应的边缘服务器进行任务卸载。本申请提供的方法通过一系列运算获取最佳卸载决策,以及根据最佳卸载决策选择相应的边缘服务器进行任务卸载,降低了边缘服务器卸载时延以及卸载能耗的加权和,提高了移动设备边缘卸载的效率。
-
-
-