-
公开(公告)号:CN117196959A
公开(公告)日:2023-12-08
申请号:CN202311475294.9
申请日:2023-11-08
Applicant: 华侨大学
IPC: G06T3/40 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于自注意力的红外图像超分辨率方法、装置及可读介质,涉及图像处理领域,包括:构建基于自注意力的轻量级红外图像超分辨率模型并训练,得到经训练的轻量级红外图像超分辨率模型;将待重建的低分辨率红外图像输入经训练的轻量级红外图像超分辨率模型,该模型包括3×3卷积层、轻量级Transformer与CNN骨干、高效细节自注意力模块和图像重建模块,待重建的低分辨率红外图像输入3×3卷积层,得到第一特征,再依次经过轻量级Transformer与CNN骨干和高效细节自注意力模块,且高效细节自注意力模块以共享参数的方式循环n次,得到第二特征,将第一特征和第二特征进行残差连接后输入图像重建模块,输出高分辨率红外图像,解决参数量冗余、性能差等问题。
-
公开(公告)号:CN117173609A
公开(公告)日:2023-12-05
申请号:CN202311112440.1
申请日:2023-08-31
Applicant: 华侨大学
IPC: G06V20/40 , G06V10/52 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于多尺度特征和通道注意力的无参考屏幕视频质量评价方法及装置,该方法包括:获取视频中采用随机抽样方式抽取的视频帧;构建视频质量评价模型并进行训练,得到经训练的视频质量评价模型,视频质量评价模型包括依次连接的特征提取模块、通道注意力模块、视频时序特征提取模块和平均池化层,特征提取模块用于提取视频帧中的多尺度特征,通道注意力模块用于对多尺度特征进行特征加权,视频时序特征提取模块用于进行特征提取得到时空维度特征,并经过平均池化层计算视频对应的质量分数;将视频帧输入经训练的视频质量评价模型,得到视频的质量分数,具有较好的屏幕视频质量评价效果。
-
公开(公告)号:CN117036416A
公开(公告)日:2023-11-10
申请号:CN202311082425.7
申请日:2023-08-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于深层交互注意力机制的目标跟踪方法、装置及可读介质,该方法包括:获取视频序列,并分别从视频序列和第一帧中提取当前帧和模板帧;构建目标跟踪模型并训练,目标跟踪模型包括特征提取模块、Sim模块、判别定位模块和通道微调模块;将当前帧和模板帧输入经训练的目标跟踪模型,通过特征提取模块提取若干特征,将若干特征中的其中一个特征和模板帧输入Sim模块,得到前景特征图和前景概率特征图,将若干特征中的其中一个特征和模板帧输入判别定位模块,得到定位特征图,将前景特征图、前景概率特征图和定位特征图进行融合,得到混合特征图,将若干特征中的其余特征与混合特征图输入通道微调模块,得到目标跟踪结果,提高鲁棒性。
-
公开(公告)号:CN116452631A
公开(公告)日:2023-07-18
申请号:CN202310306107.8
申请日:2023-03-27
Applicant: 华侨大学
Abstract: 本发明涉及一种多目标跟踪方法、终端设备及存储介质,该方法中包括:读取视频信息;对视频信息中的帧图像进行目标分割,得到目标的像素级信息和表观特征信息;基于卡尔曼滤波算法对各帧图像中的轨迹进行预测;基于前一帧图像中的轨迹和当前帧图像中目标的表观特征信息,计算两者之间的外观相似度,提取外观相似度大于相似度阈值的轨迹和目标作为预匹配轨迹和预匹配目标,将预匹配目标存入匹配目标集;计算预匹配轨迹与预匹配目标之间的代价矩阵,计算未匹配轨迹与未匹配目标之间的Mask‑IoU分数,将两者融合得到最终代价矩阵;通过匈牙利算法得到轨迹匹配结果。本发明相比于现有方法可以兼具效率与性能。
-
公开(公告)号:CN116405683A
公开(公告)日:2023-07-07
申请号:CN202310449794.9
申请日:2023-04-24
Applicant: 华侨大学
IPC: H04N19/147 , H04N19/176 , H04N19/149 , H04N19/11 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于3D‑HEVC深度图模式预测的深度图编码方法、装置及可读介质,通过构建基于卷积网络的DMM模式预测模型并进行训练,得到经训练的DMM模式预测模型;将待编码深度图序列划分得到第一级别尺寸下的若干个当前待编码块,将当前待编码块输入经训练的DMM模式预测模型,输出的网络预测值为当前待编码块的编码过程中是否需要将DMM模式加入对应尺寸的全率失真代价计算列表的标签值;采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中调用网络预测值,并确定当前待编码块在对应尺寸下的最佳模式;以判断是否需要将DMM模式加入对应尺寸的全率失真代价计算列表,可避免直接将DMM模式加入全率失真代价计算列表,导致对DMM模式冗余的率失真计算过程。
-
公开(公告)号:CN111126310B
公开(公告)日:2023-03-24
申请号:CN201911367254.6
申请日:2019-12-26
Applicant: 华侨大学
IPC: G06V40/10 , G06V10/774 , G06V10/82 , G06N3/0475 , G06N3/0464 , G06N3/094
Abstract: 本发明涉及一种基于场景迁移的行人性别识别方法,包括场景迁移过程与性别识别过程。本发明通过对偶生成对抗模型对来自不同场景的行人图像集进行图像迁移,减小不同数据集中行人场景的差异。利用迁移图像训练卷积神经网络,使网络模型具有较高精度的性别识别能力。本发明结合了对偶生成对抗模型用于图像迁移的优点,解决了以往基于卷积神经网络在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,大型商场的人口统计等。
-
公开(公告)号:CN115546251A
公开(公告)日:2022-12-30
申请号:CN202211279274.X
申请日:2022-10-19
Applicant: 华侨大学
Abstract: 本发明一种基于GIoU门限机制的在线多目标跟踪方法、设备和存储介质,提出一种加入到级联匹配过程的GIoU门限机制GIGM,以提高关联性能、解决长距离标识切换问题,当目标和检测距离较远时,GIGM可以有效防止匹配和长距离标识切换,CIoU匹配被用作第二关联策略,以获得更好和更合理的跟踪结果。即使检测目标在外观上高度相似,但当它们的位置相距很远时,GIGM可以防止该错误匹配。
-
公开(公告)号:CN115424168A
公开(公告)日:2022-12-02
申请号:CN202210975931.8
申请日:2022-08-15
Applicant: 华侨大学
Abstract: 本发明公开了一种基于自适应3D卷积的屏幕视频质量评价方法及装置,获取屏幕视频,基于局部视频活动度Γ(Px,y,t)对屏幕视频进行自适应分割,得到屏幕视频序列集合,屏幕视频包括参考屏幕视频和失真屏幕视频,屏幕视频序列集合包括参考屏幕视频序列集合和失真屏幕视频序列集合;通过3D卷积神经网络分别提取参考屏幕视频序列集合的参考时空卷积特征STr以及失真屏幕视频序列集合的失真时空卷积特征STd;采用双尺度卷积神经网络对参考时空卷积特征STr和失真时空卷积特征STd实现双通道时空特征融合,计算得到失真屏幕视频的质量评价分数。着重于考虑人眼视觉系统特性及屏幕视频本质信息,模拟人类视觉系统的多通道视觉处理过程,从不同角度实现对失真屏幕视频的质量预测。
-
公开(公告)号:CN111510721B
公开(公告)日:2022-11-01
申请号:CN202010278978.X
申请日:2020-04-10
Applicant: 华侨大学
IPC: H04N19/39 , H04N19/132 , H04N19/59 , H04N19/124 , H04N19/61
Abstract: 本发明提供了一种基于空间下采样的多描述编码高质量边重建方法,包括,制作数据集:选取视频,通过空间下采样分成两个描述,在量化参数QP值设定下,编码,解码,将解码后的视频和相应的原始视频作为训练集;训练SD‑VSRnet网络:每五帧视频作为网络的输入,依次进行特征提取,恢复高频细节,像素重排,再与输入的中间帧进行跳跃连接得到重建的视频帧,逐帧重建获得最后的重建视频,实现SD‑VSRnet网络的训练。本发明提出的方法制作了适用于空间下采样的多描述编码高质量边重建的数据集,另外,采用视频超分辨率的神经网络,分别测试4种QP值,可以有效提高不同压缩程度的边缘解码视频重建质量。
-
公开(公告)号:CN114972812A
公开(公告)日:2022-08-30
申请号:CN202210624115.2
申请日:2022-06-02
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明提供一种基于结构相似度的非局部注意力学习方法,可广泛应用于机器视觉领域,例如图像分割、图像分类、图像识别等。现有非局部注意力方法简单计算不同空域位置的两个信号内积作为二者的相似度度量,并不完全符合人类视觉感知特点。针对这一问题,本发明提出利用结构相似度衡量不同空域位置的信号之间的相似度,在非局部注意力学习方法中充分考虑人类视觉对信号感知三个重要因素,即亮度、对比度和结构。其次,本发明进一步提出多尺度结构相似度度量策略,在不同尺度上更为全面地进行信号相似度度量。因此,本发明能够取得比现有非局部注意力方法更好地注意力学习效果。
-
-
-
-
-
-
-
-
-