一种软件密集系统故障预测方法

    公开(公告)号:CN109656818B

    公开(公告)日:2022-02-15

    申请号:CN201811477290.3

    申请日:2018-12-05

    Abstract: 本发明涉及一种软件密集系统故障预测方法,其中,包括:步骤一、构建特征向量;步骤二、通过获得的特征向量,训练时间序列预测法模型,并输出时间序列预测法模型的特征向量,用训练好的时间序列预测法模型对下一时刻系统硬件信息进行预测;步骤三、构建基于随机深林算法的故障预测模型,将步骤二中得到时间序列预测法模型的特征向量,输入随机森林模型中,得到软件故障的预测结果。本发明方法不依赖于人工确认及个人分析经验,通过实际观测数据进行智能预测,预测结果更为客观。

    一种涉密电子文件定解密方法

    公开(公告)号:CN113486191A

    公开(公告)日:2021-10-08

    申请号:CN202110709394.8

    申请日:2021-06-25

    Abstract: 本发明涉及一种涉密电子文件定解密方法,属于文件定解密领域。本发明包括如下步骤:S1、涉密电子文件密点分析与样本收集;S2、基于信息增益的密点关键词挖掘;S3、基于知识图谱的密点关联规则库构建;S4融合军工密点规则集的知识图谱构建;S5、智能匹配对比与快速定解密。本发明通过智能化分析技术,加强涉密电子文件定解密工作的准确化、规范化;利用电子文件密点动态追踪手段,提升电子文件密级解除工作的及时性、准确性和智能性;通过密点比对和基于语义分析的智能匹配技术,实现涉密电子文件密级的实时确定、智能化变更和及时解密。

    基于Hadoop的DGCNN模型加速方法

    公开(公告)号:CN111160535A

    公开(公告)日:2020-05-15

    申请号:CN201911412304.8

    申请日:2019-12-31

    Abstract: 本发明涉及一种基于Hadoop的DGCNN加速方法,其中,包括:利用MapReduce实现训练样本和计算答案初始位置与结束位置的并行化,分布式地存储在Hadoop平台的每个节点上,每个节点都存储一个相同的完整的卷积神经网络,对于各小块中的每一个样本,节点都执行一次前向传播和反向传播计算,得出各个权值和偏置的局部改变量以及位置信息,接着汇总每个权值和偏置的局部改变量从而得到全局改变量,多次用全局改变量更新权值之后,获得最终网络;使用CUDA进行特征矩阵、神经元以及权值的并行化,为每一层的特征矩阵启动一个线程格,线程块中每个线程对应一个神经元,使得神经元并行,在误差反向传播中,用一个线程对应一个权值,计算该权值的局部梯度改变量,使得权值并行。

Patent Agency Ranking