-
公开(公告)号:CN106526553A
公开(公告)日:2017-03-22
申请号:CN201610932111.5
申请日:2016-10-31
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明涉及一种通用的SAR卫星方位模糊度性能精确分析方法,该方法通过沿方位向逐点计算成像点回波强度和模糊点回波强度,得到方位模糊度指标;通过寻找与成像点具有相同的斜距,多普勒频率相差整数倍PRF的模糊点,解方程得到模糊点坐标;充分考虑精确的轨道模型、地球模型、卫星姿态、天线安装位置和角度和天线电扫描角因素,得到成像点和模糊点在SAR卫星天线球面坐标系下的精确坐标;根据成像点在天线方向图方位和距离向主剖面上分量,拟合得到成像点准确的天线增益;通过模糊强度比上成像点回波强度,得到方位模糊度指标。本发明为SAR卫星提供一种通用、准确的方位模糊度指标计算方法。
-
公开(公告)号:CN106523568A
公开(公告)日:2017-03-22
申请号:CN201510581351.0
申请日:2015-09-14
Applicant: 北京空间飞行器总体设计部
IPC: F16F7/104
Abstract: 本发明提供了一种阻尼放大式隔振器,通过将隔振器的阻尼系数放大并提高阻尼比,降低共振放大系数,从而改善隔振效果,包括:刚性支架,由底盘和侧壁两部分组成;导向弹簧;挠性连杆,为菱形四连杆结构,由4个连杆、8个挠性铰和4个对接块组成;阻尼器活动件;以及阻尼器固定件,其中,4个连杆的长度相等,每个连杆的两端各有一个挠性铰,并且每两个连杆之间通过两个挠性铰连接至对应的对接块。因此,采用本发明的阻尼放大式隔振器,将阻尼器的阻尼系数放大,提高了隔振器的阻尼比,使隔振器的阻尼特性有了更宽的可设计的范围,能够实现更好的隔振效果。
-
公开(公告)号:CN112505694B
公开(公告)日:2023-07-28
申请号:CN202011191896.8
申请日:2020-10-30
Applicant: 北京空间飞行器总体设计部
Abstract: 一种在轨SAR卫星对空间目标成像方法,充分考虑在轨SAR卫星与待成像空间目标高速相对运动特点,以及系统限制,结合STK软件,解决了SAR卫星对空间目标成像过程中二者相对运动复杂、几何关系难于确定、成像参数精度要求高的问题。通过选择合适的脉冲重复频率,确保待成像空间目标回波有效接收,同时回避发射脉冲、星下点回波、地面场景回波等干扰。通过卫星姿态机动和天线电扫描相结合的方式,实现了SAR卫星对空间目标成像所需的波束指向,降低了实现成本和复杂度,扩展了在轨SAR卫星的应用范围。
-
公开(公告)号:CN112130147B
公开(公告)日:2022-09-06
申请号:CN202010900047.9
申请日:2020-08-31
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 一种基于海陆目标位置信息的成像波位确定方法,属于星载合成孔径雷达成像技术,首先,根据星载SAR成像准备时间,设置星上定位系统PVT数据外推时间;其次,基于实时广播的PVT、姿态数据,通过坐标系转换和星地位置计算,获得目标在卫星本体坐标系下的位置矢量;再次,根据目标在卫星本体坐标系下的位置矢量确定目标的成像时刻和最优成像波位。本发明方法充分利用了星上定位系统PVT数据外推功能,输入参数简单且易于卫星自主实现,计算精度相对较高。
-
公开(公告)号:CN111413695B
公开(公告)日:2022-04-08
申请号:CN202010286493.5
申请日:2020-04-13
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90 , G01S13/91 , G01S13/937 , G01S19/48 , G08G3/02
Abstract: 本发明涉及一种适用于船舶引导成像的星载SAR实时成像参数计算方法,属于低轨SAR载荷卫星自主成像技术领域;步骤一、确定SAR卫星的成像模式、极化方式和成像时长;步骤二、设定波位组的个数,及各波位组的参数;步骤三、选择各波位组的脉冲宽度、带宽和PRF分频码;计算帧长;步骤四、解析目标船舶报文得到卫星星下点纬度、真实斜距及天线波束扫描角度,选择对应的波位组固定参数;步骤五、计算实际的发射接收脉冲延迟数、采样起始时间、成像起始时刻和成像结束时刻;步骤六、SAR成像系统根据成像指令包完成目标船舶微波成像;本发明实现了对AIS发现目标船舶的短时间(缩短到秒级)内完成实时SAR成像,大幅度提高了对海洋船舶监测的时效性和可见性。
-
公开(公告)号:CN112859122A
公开(公告)日:2021-05-28
申请号:CN202110031851.2
申请日:2021-01-11
Applicant: 北京空间飞行器总体设计部
IPC: G01S19/37
Abstract: 本发明涉及一种高分辨率星载SAR系统多子带信号误差估计与补偿方法,属于信号处理领域;步骤一、基于各子带成像数据中的强点目标,采用相位梯度自聚焦方法计算各子带内信号的幅度误差A′k(fτ)和相位误差Φ'k(fτ);步骤二、计算子带间信号的幅度误差ΔΡk、相位误差Δαk和时延误差Δtk;步骤三、对原始数据的多子带成像数据进行误差补偿,并进行多子带信号拼接,得到全分辨率SAR图像,实现距离向分辨率的提升;本发明基于各子带成像数据,采用相位梯度自聚焦方法估计各子带信号的幅度和相位误差,在此基础上,进一步估计子带间的时延、幅度和相位误差,并给出了子带内和子带间误差补偿方法。
-
公开(公告)号:CN107300699B
公开(公告)日:2020-12-25
申请号:CN201610238754.X
申请日:2016-04-15
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 本发明提供了一种基于敏捷合成孔径雷达卫星姿态机动的马赛克模式实现方法,包括:计算实现马赛克模式成像所需的总体参数;对马赛克模式成像的图像的中间子成像块的参数进行计算;基于中间子成像模块,逐渐增加子成像块并对其参数进行计算,直至获得的图像的方位向成像范围满足需求。因此,本发明充分考虑精确的轨道和地球模型,根据马赛克模式需求性能指标和成像几何设计敏捷SAR卫星的瞄准点和工作时序,通过整星的横滚和俯仰机动得到成像所需的波束指向,通过整星的偏航机动控制雷达波束地面足印方向,通过电扫描实现距离向波束快速切换。保证了马赛克模式不同子成像块之间的无缝拼接,提供了一种经济、高效的实现途径。
-
公开(公告)号:CN107300700B
公开(公告)日:2020-05-22
申请号:CN201610238755.4
申请日:2016-04-15
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 本发明提出了一种敏捷合成孔径雷达卫星聚束模式姿态机动需求计算方法,在聚束模式工作时包括:对雷达波束的地面瞄准点和成像时序进行规划;根据所规划的成像时序,对所述雷达波束的姿态机动需求信息进行粗算;将粗算获得的姿态机动需求信息作为初始信息进行精算以完成最终的姿态机动需求计算。因此,本发明考虑了雷达波束离轴角的影响,适用于包含任意离轴角的敏捷SAR卫星聚束模式姿态机动需求计算,也可应用于机械扫描和电扫描联合实现的SAR卫星聚束模式姿态机动需求计算,得到满足精度要求的需求姿态,能够适用于天线安装于星体任何位置的敏捷SAR卫星聚束模式姿态机动需求计算。
-
公开(公告)号:CN110763141A
公开(公告)日:2020-02-07
申请号:CN201910808888.4
申请日:2019-08-29
Applicant: 北京空间飞行器总体设计部
Abstract: 一种高精度的六自由度测量系统的精度验证方法及系统,适用于长距离高精度六自由度测量系统的测量精度验证。本发明针对激光测距仪和数码相机的组合六自由度测量系统,在60m大长度范围内使用高精度激光跟踪仪和靶标系统分步对激光方向和相机进行标定,建立高可靠的激光测距仪和数码相机之间测量坐标系的转换关系,进而进行高精度的六自由度测量系统测量精度验证,可同步验证亚毫米级的位移测量精度和角秒级的三轴角度测量精度,从而解决高精度长距离六自由度测量系统的精度验证迫切需求。
-
公开(公告)号:CN107733515B
公开(公告)日:2019-12-31
申请号:CN201710775173.4
申请日:2017-08-31
Applicant: 北京空间飞行器总体设计部
IPC: H04B7/185
Abstract: 一种在轨复杂环境下卫星通信链路分析方法,综合考虑卫星姿态与轨道、结构布局构形及部件转动机构、载荷天线遮挡、数传天线遮挡、EMC设计、星地通信链路参数,测控天线设计及选型等,构建出精确地卫星模型,设计出一种在轨复杂环境下卫星通信链路分析的方法,并利用实测星体环境下测控天线方向图信息,通过此方法仿真得出定量化、精细化的测控弧段覆盖特性,可以优化卫星构形布局、测控数传系统性能改进、用户在轨工作模式和使用策略设计,最大程度的利用测控弧段,进行上行应急控制或者下行遥测监视,对整星的安全性尤为重要。
-
-
-
-
-
-
-
-
-