一种偶氮吡啶盐化合物及制备方法

    公开(公告)号:CN107602456A

    公开(公告)日:2018-01-19

    申请号:CN201710979180.6

    申请日:2017-10-19

    Abstract: 本发明提供了一种偶氮吡啶盐化合物的制备方法,其合成包括如下步骤:(1)4-氨基吡啶和苯酚在亚硝酸根存在的条件下发生重氮偶合反应,得到中间体4-羟基苯偶氮吡啶;(2)4-羟基苯偶氮吡啶与氯代十二烷烃或溴代十二烷烃发生醚化反应,生成的偶氮吡啶衍生物。(3)偶氮吡啶衍生物与1,3,5-三溴甲基苯按一定比例冷凝回流反应,生成一种三臂星型偶氮吡啶盐化合物。本申请能够制备出具有快速顺反异构效应和聚集诱导荧光的效应的偶氮吡啶盐化合物,在可调光学滤光片,可调的多模式激光防护、防伪、光栅等领域,以及激光操控器、液晶自适应光学系统等领域有着广阔的潜在应用。

    基于印刷透明电极的可拉伸压力传感器及其制备方法

    公开(公告)号:CN105387957A

    公开(公告)日:2016-03-09

    申请号:CN201510673308.7

    申请日:2015-10-16

    CPC classification number: G01L1/142

    Abstract: 本发明涉及一种基于印刷透明电极的可拉伸压力传感器及其制备方法,基于印刷透明电极的可拉伸压力传感器的特征在于,包括上、下两个可拉伸基底,附着于可拉伸基底内表面的印刷透明电极,以及夹在两个印刷透明电极之间的介电层。与现有技术相比,本发明的可拉伸压力传感器既具有可拉伸、透明化特点,又具有较高的灵敏度与稳定性。另一方面,该可拉伸透明电极是利用印刷方式制备的,无需任何复杂的微纳加工过程,成本低、效率高、能耗小,特别适合于大面积、大规模的生产,有利于传感器的应用推广。

    一种可免加热后处理纳米尺度铜油墨的制备方法

    公开(公告)号:CN103525199B

    公开(公告)日:2015-12-02

    申请号:CN201310507443.5

    申请日:2013-10-24

    Abstract: 本发明涉及一种可免加热后处理纳米尺度铜油墨的制备方法,先将有机保护剂溶解在溶剂中,调节pH值至9.5~11.5;然后把铜盐和助剂加入到溶液中,铜盐和有机保护剂的摩尔比例在1:0.3~1:0.6,持续搅拌升温至60~90℃;将还原剂加入到所述的溶液中,反应20~60分钟,停止加热,逐渐冷却;将冷却溶液依次经纱布过滤、5μm的滤纸抽滤,洗涤,经离心得到高固含量纳米尺度铜的铜浆;将上述高含量的铜浆分散到溶剂中砂磨处理,得到可免加热后处理纳米尺度铜油墨。本发明制备的铜导电油墨可以免高温加热处理,在空气中或低温条件下使溶剂挥发电阻率即可达到铜体电阻率的30-140倍,适用于广基材,大幅面,大规模的生产。

    一种复合油墨、柔性超级电容器电极及其制作方法

    公开(公告)号:CN103923529A

    公开(公告)日:2014-07-16

    申请号:CN201410186329.1

    申请日:2014-05-05

    Abstract: 本发明涉及一种复合油墨、柔性超级电容器电极及其制作方法。该复合油墨组成包括:导电高分子分散液、纳米金属氧化物和助剂等,导电高分子分散液由导电高分子与有机溶剂按质量比为20:1的比例混合得到,导电高分子分散液的质量分数为89%~57%,纳米金属氧化物的质量分数为10%~40%,助剂的质量分数为1%~3%。柔性超级电容器电极采用本发明油墨通过印刷方式制成,将该油墨通过柔版印刷或凹版印刷的方式制作活性电极,将纳微米导电油墨印刷制作集流体,在柔性薄膜上构建一种柔性超级电容器电极;其制备工艺简单,易于批量制作,在便携式柔性电子器件、可穿戴电子器件方面应用前景广阔。

    一种可大量生产的纳米铜导电油墨的制备方法

    公开(公告)号:CN103555049A

    公开(公告)日:2014-02-05

    申请号:CN201310507585.1

    申请日:2013-10-24

    Abstract: 本发明涉及一种可大量生产的纳米铜导电油墨的制备方法,属于纳米材料技术领域。制备时,先将保护剂溶解于去离子水中,调节溶液的pH值至9.0~12.0,然后将铜盐和助剂加入到溶液中;持续搅拌,水浴加热使溶液的温度达到60~90℃;将还原剂加入到溶液中,搅拌15~40min后,逐渐冷却;先用纱布过滤,然后用5μm的滤纸抽滤;将抽滤液沉降,沉降物进行洗涤和离心处理,加入溶剂后再进行分散处理,即可得到稳定的纳米铜导电墨水。本发明纳米铜导电性高,工艺简单,反应时间短,成本低,绿色环保,可适用于大量生产。

    一种复合透明导电薄膜及其制备方法

    公开(公告)号:CN103325442A

    公开(公告)日:2013-09-25

    申请号:CN201310261713.9

    申请日:2013-06-27

    Abstract: 本发明涉及一种复合透明导电薄膜及其制备方法,所述复合透明导电薄膜自下而上依次为基底、金属层及导电涂层;其中所述的金属层为图形化的金属导电栅格;所述导电涂层为碳材料涂层。其中,金属导电栅格以外的面积之和占薄膜全部面积的80%以上;碳材料可以是碳纳米管或石墨烯。所述的导电涂层是全表面积的涂布于薄膜上,避免了空白部分不导电,实现了全表面积连续导电,降低了复合透明导电薄膜的表面电阻,提高了复合透明导电薄膜的稳定性。

    一种透明基材上金属导线印迹形貌特征的检测和表征方法

    公开(公告)号:CN103234477A

    公开(公告)日:2013-08-07

    申请号:CN201310116410.8

    申请日:2013-04-03

    Abstract: 本发明涉及一种透明基材上金属导线印迹的形貌特征检测和表征方法,包括(1)从透明基材的金属导线印迹样品的背面,沿与样品表面垂直方向照射样品,光源为白光,且为平行光;在透明基材的金属导线印迹样品的正面沿样品表面垂直方向设置CCD成像系统;(2)对CCD成像系统进行光透过率的标定;(3)拍摄得到透明基材上金属导线印迹的灰度数字影像;(4)利用标定关系,对灰度数字影像进行数值转换,形成印迹样品的光透过率数字影像;(5)任意选取金属导线印迹中的一段,通过数字图像处理的方法得到金属导线印迹的表面形貌、面粗糙度,以及印迹线宽度和线边缘粗糙度等形貌特征。本发明利用透射光信息得到了金属导电印迹的定量化形貌参量。

    一种新型传感器材料及其制备方法

    公开(公告)号:CN114873929B

    公开(公告)日:2023-04-14

    申请号:CN202210542773.7

    申请日:2022-05-18

    Abstract: 本发明涉及一种新型传感器材料及其制备方法,该制备方法包括如下步骤:室温下,将咪唑类离子液体与纯水混合溶解形成离子液体水溶液,向离子液体水溶液中加入MXene材料得混合液,再于向混合液中滴加苯胺乙醇溶液,减压旋转蒸发浓缩至原体积的三分之一以下,将瓶内液体涂覆于玻璃或陶瓷基板上,随后置于烘箱内进行初烘处理,然后进行大气压等离子体处理,再进行终烘处理,取出冷至室温,即得。优点为,使用离子液体和原位聚合形成的氧化聚苯胺对二维MXene材料进行插层及表面改性,利用介质阻挡放电装置的电压引导扩散和大气压等离子体的促聚合扩散作用,使改性后的MXene材料对NOx气体传感性能显著提升,室温下响应值在80以上。

    一种提高导电薄膜导电性的方法

    公开(公告)号:CN114702715A

    公开(公告)日:2022-07-05

    申请号:CN202210413214.6

    申请日:2022-04-20

    Abstract: 本发明属于印刷电子技术领域,具体涉及一种提高导电薄膜导电性的方法。本发明提供了一种提高导电薄膜导电性的方法,包括以下步骤:提供导电薄膜;所述导电薄膜包括基底和导电层;制备所述导电层的导电油墨为水溶性导电油墨;将所述导电薄膜在水溶性金属盐溶液中进行浸渍处理;所述水溶性金属盐溶液中的溶剂包括水和醇类溶剂。本发明利用水溶性金属盐溶液对导电薄膜进行浸渍处理,能够提高导电薄膜的导电性;且条件温和,能耗较低。

Patent Agency Ranking