一种基于图网络的多目标跟踪方法

    公开(公告)号:CN111881840B

    公开(公告)日:2023-09-22

    申请号:CN202010748159.7

    申请日:2020-07-30

    Abstract: 本发明提供了一种基于图网络的多目标跟踪方法,图网络包括特征提取网络模块和图卷积匹配模块,具体包括以下步骤:S1、选取视频中的两帧图像输入特征提取网络模块;S2、通过特征提取网络模块对目标进行特征的提取,获取两帧图像各自的目标特征向量集FM和FN,M和N分别表示两帧图像中检测到目标的数量;S3、基于目标特征向量集FM和FN,计算目标特征向量之间的相似度,构建二部图;S4、通过所述图卷积匹配模块对二部图进行匹配,并利用损失函数进行图网络的反向传播获得最优的匹配矩阵。本发明提供的一种基于图网络的多目标跟踪方法,利用卷积网络对目标进行特征提取,并且提出的损失函数解决了目标数量不确定的问题,大大提高多目标跟踪的正确率。

    基于深度学习的轻量化纹理表面缺陷检测方法和系统

    公开(公告)号:CN116777842A

    公开(公告)日:2023-09-19

    申请号:CN202310591633.3

    申请日:2023-05-24

    Abstract: 本发明提供基于深度学习的轻量化纹理表面缺陷检测方法和系统,方法分为训练和测试阶段。训练阶段基于输入训练集的纹理表面图像,并将其通过层层卷积前向传播得到缺陷特征的预测框,得到缺陷特征的预测框,接着计算缺陷特征的预测框和目标图像真实框之间的损失,利用损失进行反向传播,更新模型权重,重复这个过程直到达到设定的迭代轮数epoch。之后是测试阶段,加载测试集的数据,通过训练好的模型输出缺陷图像的类别和定位,并进行评估指标计算,根据指标进行模型性能的判定,如果不能满足预期要求,则重新回到训练环节,进行进一步的调整训练,如果已经达到预期的性能,则保存模型权重,完成整个技术发明的流程,得到最终的解决方案。

    任务自适应的小样本行为识别方法及系统

    公开(公告)号:CN115240106A

    公开(公告)日:2022-10-25

    申请号:CN202210815080.0

    申请日:2022-07-12

    Abstract: 本发明提供一种任务自适应的小样本行为识别方法及系统,属于计算机视觉技术领域,获取待识别的视频数据;利用预先训练好的识别模型,对获取的所述待识别的视频数据进行处理,得到动作类别结果加入注意力层,提取行为主体在图片帧中的位置信息以及图像内容信息,通过注意力机制对提取的特征特征进行调制,获取同一类动作的类内特征共性以及不同类动作的类间的差异性。本发明提取特征时加入注意力层,产生更具分辨性的特征表示;对同类行为中不同样本进行随机多模态融合,扩充了支持集数据,使得模型对行为主体所在环境的变换鲁棒性更强;通过task级的特征调制,使特征更符合当前任务的需求并聚焦于行为主体,有助于提高分类准确率。

    一种面向强鲁棒性的神经网络模型生成方法

    公开(公告)号:CN114595804A

    公开(公告)日:2022-06-07

    申请号:CN202210158680.4

    申请日:2022-02-21

    Abstract: 本发明提供了一种面向强鲁棒性的神经网络模型生成方法。该方法包括:根据随机数种子生成随机数集合;利用随机数集合对每个种子卷积核使用单项式生成函数生成多个新的生成卷积核,将所有的卷积核构成神经网络模型;将神经网络模型部署在终端设备上,终端设备利用所述神经网络模型进行数据处理。本发明提供了一种针对部分破坏数据的面向强鲁棒性的神经网络模型生成方法,解决现有技术中存在的模型鲁棒性低的问题。通过在神经网络模型中引入不可学习参数,减少模型对训练数据的依赖。

    一种基于变换器神经网络的点云数据处理方法

    公开(公告)号:CN113870160A

    公开(公告)日:2021-12-31

    申请号:CN202111060998.0

    申请日:2021-09-10

    Abstract: 本发明提供了一种基于变换器神经网络的点云数据处理方法。该方法包括:构建三维物体对称检测模型,通过检测物体对称面/轴获取输入的点云数据的对称点,将点云数据的投影平面转换为对称结构的旋转平移操作,得到多组数据据增强后的点云图数据;通过变换器网络模型提取多组数据据增强后的点云图数据的全局特征信息和局部特征信息,得到下采样后的点云数据;结合不同的目标任务需求,构建任务驱动的任务网络模型,将下采样后的点云数据输入到任务网络模型,得到目标任务结果。本发明有效结合三维物体对称检测模型与变换器网络模型,能够在提高下采样模型鲁棒性的同时,进而具有最小化目标任务精度损失的能力,提升下采样规模和目标任务的精确度。

    基于转弯权重约束的最短路径规划方法

    公开(公告)号:CN110515380B

    公开(公告)日:2021-07-13

    申请号:CN201910779182.X

    申请日:2019-08-22

    Abstract: 本发明提供了一种基于转弯权重约束的最短路径规划方法。该方法包括:步骤1、计算出源点v与其它所有结点之间的距离,将源点v与其它所有结点之间的距离存储在结点距离数据表中;步骤2、从U中选取一个到源点v距离最短的结点k,把k加入S中;步骤3、以结点k为中间结点,基于转弯权重重新计算U中各结点到源点v的距离,将重新计算的源点v与其它所有结点之间的距离更新存储在结点距离数据表中;步骤4、重复执行步骤2和3,直到将终点w添加到S中,得到源点v到终点w的最短路径。本发明在有效计算最短路径的同时,对路口转弯进行权重惩罚,得出的最短路径在道路长度较短的基础上能够尽量避免转弯,帮助AGV引导车进程有效快速的完成任务。

    一种用于重识别的超球面特征嵌入方法及系统

    公开(公告)号:CN112800876A

    公开(公告)日:2021-05-14

    申请号:CN202110050152.2

    申请日:2021-01-14

    Abstract: 本发明实施例提供了一种用于重识别的超球面特征嵌入方法,包括以下步骤:图像预处理阶段:从数据集中读取目标样本图像,对图像进行预处理;特征提取阶段:将预处理后的图像输入到深度网络模型提取图像的特征映射并结合注意力机制的全局池化操作得到特征向量;损失计算及训练优化阶段:根据所述特征向量和目标ID标签分别计算三种损失函数损失的值,根据损失的值计算深度卷积神经网络参数的梯度对模型进行优化;测试评估阶段:对训练完成的深度网络模型进行测试并根据测试结果调整超参数。本发明还提供了一种用于重识别的超球面特征嵌入系统,包括:图像预处理模块、特征提取模块、超球面特征嵌入模块和测试模块。

    基于深度学习的室内烟雾和火灾检测方法

    公开(公告)号:CN112349057A

    公开(公告)日:2021-02-09

    申请号:CN202011384257.3

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于深度学习的室内烟雾和火灾检测方法。该方法包括:建立烟雾和火灾数据集,对烟雾和火灾数据集中的每张图像进行标注,选取标注后的一定数量的图像分别作为训练集和测试集;使用深度学习框架构建卷积深度网络模型,利用训练集和测试集对卷积深度网络模型进行训练和测试,得到训练好的卷积深度网络模型;将待测的图像输入到训练好的卷积深度网络模型,训练好的卷积深度网络模型输出所述待测的图像的烟雾和火灾检测结果。本发明的方法利用摄像头获取的图像数据,通过卷积神经网络模型对图像数据中的烟雾、火灾进行实时预测,不仅极大地降低了人力成本,而且提高了烟雾、火灾的识别准确率。

    一种低剂量CT图像降噪方法

    公开(公告)号:CN111968058A

    公开(公告)日:2020-11-20

    申请号:CN202010863754.5

    申请日:2020-08-25

    Abstract: 本发明提供了一种低剂量CT图像降噪方法,包括:获取训练数据集;建立降噪网络模型,包括自适应边缘特征提取模块用于对输入的训练数据集中低剂量CT图像进行边缘特征的提取;第一融合层对自适应边缘特征提取模块的输出信号和输入信号进行融合;卷积模块包括多层卷积层构成的编码器、多层返卷积层构成的解码器以及第二融合层,编码器对第一融合层的输出信号进行编码,第二融合层使用跳跃的方式将解码器的反卷积层的特征图与其在编码器中对称的卷积层的特征图进行融合,输出降噪后的特征图;对降噪网络模型进行训练、测试;采用测试好的降噪网络模型对低剂量CT图像降噪。本方法能够保留更多细粒度的信息,得到更加接近目标图像的降噪结果。

    一种基于标签优化的图像再识别系统及损失函数确定方法

    公开(公告)号:CN109241816B

    公开(公告)日:2020-10-27

    申请号:CN201810705733.3

    申请日:2018-07-02

    Abstract: 本发明公开一种基于标签优化的图像再识别损失函数确定方法,包括获取原始多张有标签的图片,并通过生成对抗网络生成多张没有标签的图片;对每张有标签的图片和每张没有标签的图片进行特征提取;计算多个类的所述多张有标签的图片的类中心和所述多张没有标签的图片的多个簇及每个簇的簇中心;计算所述簇中心和每个所述类中心的欧式距离;根据所述欧式距离计算每个簇到所述多个类的损失函数的概率系数,得到损失函数,本发明还公开了一种基于标签优化的图像再识别系统,解决有标签的图片不多时易出现的过拟合现象,提高再识别准确度。

Patent Agency Ranking