一种用于冲压发动机的燃烧模态转换方法

    公开(公告)号:CN114215653A

    公开(公告)日:2022-03-22

    申请号:CN202111514234.4

    申请日:2021-12-13

    Abstract: 本发明提出了一种用于冲压发动机的燃烧模态转换方法,首先,获取燃烧区的当前燃烧释热空间分布;然后,根据当前燃烧释热空间分布,确定出燃烧室的当前燃烧模态;其次,根据所述当前燃烧模态和目标燃烧模态,确定驱动电源的工作频率;最后控制驱动电源按照所述工作频率驱动等离子体点火器沿进气方向发射等离子体流;使等离子体流直接作用于燃烧区内,使燃烧区内的燃烧释热空间分布实现快速动态响应,从而迅速致使燃烧区内的燃烧模态发生转变,减少了热力能耗,为解决冲压发动机燃烧模态进行快速且准确转换的问题提供了新的方法。

    霍尔推力器外磁极保护盖板

    公开(公告)号:CN114017274A

    公开(公告)日:2022-02-08

    申请号:CN202111407164.2

    申请日:2021-11-24

    Abstract: 霍尔推力器外磁极保护盖板,属于霍尔推力器领域,本发明为解决现有磁极保护盖板无法对永磁体磁极进行热量防护,及阻挡等离子对阴极的轰击,进而影响霍尔推力器寿命的问题。本发明包括水平盖板、外立板和内立板,水平盖板为圆环形水平板,外立板和内立板为圆环形立板;水平盖板的外圆周与外立板固定连接,外立板超出水平盖板的上方圆环作为阴极防护环,外立板超出水平盖板的下方圆环作为磁极外防护环;水平盖板的内圆周与内立板固定连接,内立板上端与水平盖板上表面平齐,内立板超出水平盖板下方圆环作为磁极内防护环;水平盖板安装于霍尔推力器的外磁极上方,并通过平行的磁极外防护环、磁极内防护环令水平盖板与外磁极之间形成隔热间隙。

    一种霍尔推力器供气管路绝缘结构

    公开(公告)号:CN109779864B

    公开(公告)日:2021-10-29

    申请号:CN201910181449.5

    申请日:2019-03-11

    Abstract: 一种霍尔推力器供气管路绝缘结构,属于霍尔推力器技术领域。本发明解决了现有的霍尔推力器在空间受限的情况下,供气管路与贮供系统之间的连接受限,以及易发生绝缘失效的问题。它包括气体分配器管路、绝缘子外壳、绝缘子陶瓷以及贮供系统管路,所述绝缘子外壳呈L形结构且其内部开设有L形内腔,气体分配器管路的一端部与绝缘子外壳的一端部固接且与其内腔连通设置,所述绝缘子陶瓷上开设有中心通孔,所述贮供系统管路与绝缘子外壳的另一端部之间通过所述绝缘子陶瓷固接且连通。

    一种基于微波增强的胶体推力器

    公开(公告)号:CN111456921B

    公开(公告)日:2021-10-15

    申请号:CN201910059415.9

    申请日:2019-01-22

    Abstract: 本发明提供一种基于微波增强的胶体推力器,包括:抽取极、发射极针管和底板,发射极针管穿透并固定在底板中心且位于底板上方,抽取极位于发射极针管上方,场致发射推力器还包括:套管、谐振腔外壳、微波馈入电缆和SMA微波输入接口,抽取极、谐振腔外壳和底板由上至下依次盖合形成圆柱形腔体,发射极针管位于谐振腔外壳轴心,套管套于发射极针管外,微波馈入电缆通过SMA微波输入接口进入谐振腔外壳内,并与套管的下端连接,谐振腔外壳内高为馈入微波的波长的四分之一,谐振腔外壳的内径小于馈入微波的波长的二分之一。本发明大大降低了胶体推力器的场致发射电压;同时,能够实现较高的比冲。

    基于DBD放电结构的卡门涡街流场动态识别装置及方法

    公开(公告)号:CN113295375A

    公开(公告)日:2021-08-24

    申请号:CN202110551211.4

    申请日:2021-05-20

    Abstract: 本发明涉及一种基于DBD放电结构的卡门涡街流场动态识别装置及方法。该装置包括:风洞与DBD放电结构相连接;发生体设于DBD放电结构的上电极板与下电极板之间,且垂直于DBD放电结构的上电极板;上电极板与所述下电极板平行;气体来流的流向与上电极板平行;上电极板为透明电极板;高频高压电源用于对上电极板以及下电极板施加高频高压交流电源;DBD放电结构内的气体来流被激发放电,产生等离子体;高速摄像机置于DBD放电结构的上方,高速摄像机的拍摄方向垂直于所述上电极板,高速摄像机用于基于等离子体的流动状态拍摄放电斑图;计算机用于根据连续拍摄的放电斑图确定卡门涡街流场图。本发明利用低成本的设备动态识别卡门涡街流场,操作简单,耗时短。

    微型离子推力器放电室防沉积的结构

    公开(公告)号:CN113236516A

    公开(公告)日:2021-08-10

    申请号:CN202110732225.6

    申请日:2021-06-30

    Abstract: 本发明公开了一种微型离子推力器放电室防沉积的结构,包括微型离子推力器的放电室、绝缘陶瓷套筒、绝缘陶瓷凸台结构和紧固件。绝缘陶瓷套筒包括套筒本体和法兰端面,套筒本体穿过放电室底板中部的通孔,法兰端面与放电室底板朝外的一侧贴合;绝缘陶瓷凸台结构具有阶梯面和凸台面,凸台面与放电室底板朝内的一侧贴合,阶梯面与放电室底板之间形成第一空隙,绝缘陶瓷凸台结构的外缘与阳极之间留有间隙;紧固件用于使绝缘陶瓷套筒和绝缘陶瓷凸台结构夹紧放电室底板。相比于现有技术,本发明通过设置第一空隙的方式破坏了溅射金属颗粒沉积层的连续性,保证陶瓷板的绝缘性,进而保证了放电室主阴极和阳极之间的绝缘性。

    一种控制霍尔推力器羽流发散角的装置

    公开(公告)号:CN109882370B

    公开(公告)日:2021-07-16

    申请号:CN201910168351.6

    申请日:2019-03-06

    Abstract: 本发明公开了一种控制霍尔推力器羽流发散角的装置,该装置包括永磁铁、陶瓷外壳和电极,陶瓷外壳呈闭合环状,陶瓷外壳的内侧面设置有电极,陶瓷外壳内包有永磁铁。本发明解决了由于现有霍尔推进器羽流发散角过大而导致的推力损失、推力器部件侵蚀、航天器部件受损的问题,提出了一种控制霍尔推力器羽流发散角的装置,能够有效地控制羽流区离子的运动,该装置具有结构简单,适用性较强等优点,拓展了羽流发散角控制方式的自由度,为高可靠性推力器和航天器的空间应用奠定了基础。

    一种基于加速电极的微阴极电弧推力系统

    公开(公告)号:CN111486070B

    公开(公告)日:2021-05-25

    申请号:CN202010298560.5

    申请日:2020-04-16

    Abstract: 本发明公开了一种基于加速电极的微阴极电弧推力系统。所述基于加速电极的微阴极电弧推力系统包括:功率处理单元、绝缘栅双极型晶体管、推力器、加速电极和电源;功率处理单元分别与绝缘栅双极型晶体管、推力器连接;绝缘栅双极型晶体管与推力器连接;电源分别与功率处理单元、绝缘栅双极型晶体管、推力器和加速电极连接;加速电极设置在推力器的喷口处;绝缘栅双极型晶体管用于控制电源为功率处理单元充放电以及控制电源为加速电极供电;功率处理单元用于使推力器的两极板间产生瞬态高压,形成等离子体流;加速电极用于对等离子体流加速。本发明能够提高微阴极电弧推力器的推力。

    微波同轴谐振会切场推力器

    公开(公告)号:CN112343780A

    公开(公告)日:2021-02-09

    申请号:CN201910735003.2

    申请日:2019-08-09

    Abstract: 本发明提供了一种微波同轴谐振会切场推力器,包括由陶瓷管形成的陶瓷通道、金属谐振腔、谐振腔反射底板、波导金属管、阳极、微波天线、绝缘陶瓷和环形永磁体,陶瓷管的底端伸出推力器外壳后通过金属谐振腔的顶部的开口伸入金属谐振腔的内部,谐振腔反射底板固定在金属谐振腔的底部,波导金属管设置在金属谐振腔内部,且套设在陶瓷管的外表面,所述的波导金属管的一端固定在谐振腔反射底板的中心处,谐振腔反射底板为金属谐振腔的短路端,金属谐振腔顶部的开口为金属谐振腔的开路端,金属谐振腔通过连接底板与推力器外壳固定连接。本发明通过微波同轴谐振的方式,增强了推力器通道内的电离作用,效率高,且对磁场强度分布敏感度低。

    一种大高径比霍尔推力器的磁屏结构

    公开(公告)号:CN111219304B

    公开(公告)日:2021-01-05

    申请号:CN201910204522.6

    申请日:2019-03-18

    Abstract: 一种大高径比霍尔推力器的磁屏结构,属于霍尔推力器技术领域。本发明解决现有采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度低,推力器性能低的问题。本发明包括内磁屏、外磁屏和支撑件,内磁屏、外磁屏的圆心与支撑件的圆心重合,并且内磁屏、外磁屏和支撑件之间通过勾脚和扣槽的相互扣合固定构成内外嵌套的圆筒形结构。本发明在霍尔推力器采用大高径比设计的过程中,将内磁屏和外磁屏不用同一底面连接,不仅具有采用大高径比设计霍尔推力器的提高推力器推重比、减弱壁面侵蚀等优点,使得航天飞行器的有效载荷、使用寿命和机动灵活性有所提高,同时也提高了采用大高径比设计霍尔推力器通道中径处的轴向磁场梯度,提高了推力器的工作性能。

Patent Agency Ranking