基于RBF与ADDHP的天然气吸收塔脱硫过程控制方法

    公开(公告)号:CN107831666A

    公开(公告)日:2018-03-23

    申请号:CN201711116688.X

    申请日:2017-11-13

    Abstract: 本发明提供了一种基于RBF与ADDHP的天然气吸收塔脱硫过程控制方法。利用BP神经网络对天然气吸收塔脱硫过程建模并以该模型为被控对象进行脱硫过程控制仿真实验,根据控制误差和性能指标函数不断更新优化权值,直到得到最优控制信号,实现脱硫过程的最优控制。天然气吸收塔脱硫过程复杂,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,控制难度较大。针对目前天然气吸收塔脱硫过程控制方法控制精度低,时滞大、不稳定等问题提出一种基于RBF和ADDHP的天然气吸收塔脱硫过程控制方法,不仅保证了控制系统的稳定性和控制精度,还降低了响应时间,真正实现了脱硫过程的实时精确控制。

    基于物联网大数据分析的植物培育方法及系统

    公开(公告)号:CN106444378B

    公开(公告)日:2019-07-12

    申请号:CN201610883950.2

    申请日:2016-10-10

    Abstract: 本发明提供了一种基于物联网大数据分析的植物培育方法及系统,其中的方法包括:采集植物的种类、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量;在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;利用NSGA‑Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为植物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策培育植物。利用本发明能够确定最优的植物培育方案,为植物营造了更好的生活环境。

    用于油井动液面检测的频率估算方法

    公开(公告)号:CN105822289B

    公开(公告)日:2019-03-19

    申请号:CN201610177653.6

    申请日:2016-03-25

    Abstract: 本发明公开了一种用于油井动液面检测的频率估算方法,包括以下步骤:采集油井动液面的声场信号,得到采样信号x(n);对采样信号x(n)进行加窗处理,得到加窗函数xw(n);将加窗函数xw(n)进行离散傅里叶变换,得到频谱Xw(k);从频谱Xw(k)中寻找幅值最大的频点、最大频谱幅值Xw(l)和第二大频谱幅值Xw(l±1),其中幅值最大的频点记为第一次迭代时的频率初始值l1;通过插值计算真实频率值λ0;按照公式计算信号的频率fo。有益效果:本算法运用范围广,适用于所有选择的窗函数;计算误差小,受噪声的影响小,具有较好的一致性;计算过程简洁,无需对数据进行预先计算,也不需要存储窗函数的相关参数信息。

    基于UKF与GDHP的天然气吸收塔脱硫过程控制方法

    公开(公告)号:CN107908108A

    公开(公告)日:2018-04-13

    申请号:CN201711115675.0

    申请日:2017-11-13

    Abstract: 本发明提供了一种基于UKF与GDHP的天然气吸收塔脱硫过程控制方法。利用BP神经网络对天然气吸收塔脱硫过程建模并以该模型为被控对象进行脱硫过程控制仿真实验,根据控制误差和性能指标函数不断更新优化权值,直到得到最优控制信号,实现脱硫过程的最优控制。天然气吸收塔脱硫过程复杂,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,控制难度较大。针对目前脱硫过程控制方法控制精度低,时滞大、不稳定等问题提出一种基于UKF和GDHP的天然气吸收塔脱硫过程控制方法,不仅保证了控制系统的稳定性和控制精度,还降低了响应时间,真正实现了脱硫过程的实时精确控制。

    基于RBF与GDHP的天然气吸收塔脱硫过程控制方法

    公开(公告)号:CN107703760A

    公开(公告)日:2018-02-16

    申请号:CN201711117435.4

    申请日:2017-11-13

    Abstract: 本发明提供了一种基于RBF与GDHP的天然气吸收塔脱硫过程控制方法。利用BP神经网络对吸收塔脱硫过程建模并以该模型为被控对象进行吸收塔脱硫过程控制仿真实验,根据控制误差和性能指标函数不断更新优化权值,得到新的控制信号,直到实现脱硫过程的最优控制。吸收塔脱硫过程复杂,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,控制难度较大。针对目前吸收塔脱硫过程控制方法控制精度低,时滞大、不稳定等问题提出一种基于RBF和GDHP的吸收塔脱硫过程控制方法,不仅保证了控制系统的稳定性和控制精度,还降低了响应时间,真正实现了吸收塔脱硫过程的实时控制。

    基于物联网大数据分析的宠物喂养方法及系统

    公开(公告)号:CN106614273A

    公开(公告)日:2017-05-10

    申请号:CN201610883620.3

    申请日:2016-10-10

    CPC classification number: A01K67/02

    Abstract: 本发明提供了一种基于物联网大数据分析的宠物喂养方法及系统,其中的方法包括:采集宠物的种类、性别、年龄、心跳频率、血压、体温、活动量、喂食类型、喂食量,当前图像、当前体重构成影响因素矩阵X,并上传至服务器;其中,喂食类型和喂食量构成决策变量;在服务器内利用Elman神经网络建立影响因素矩阵X与宠物健康指数之间的复杂非线性关系,获得宠物喂养模型;利用SPEA‑II算法对宠物喂养模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为宠物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策X*喂食宠物。利用本发明能够确定最优的宠物喂养方案,为宠物营造了更好的生活环境。

    基于物联网大数据分析的植物培育方法及系统

    公开(公告)号:CN106444378A

    公开(公告)日:2017-02-22

    申请号:CN201610883950.2

    申请日:2016-10-10

    CPC classification number: G05B13/042

    Abstract: 本发明提供了一种基于物联网大数据分析的植物培育方法及系统,其中的方法包括:采集植物的种类、土壤湿度、土壤pH值、光照强度、环境温度、环境湿度、图像、浇水量、施肥量、施肥类型并构成影响因素矩阵X,并上传至服务器;其中,浇水量、施肥量和施肥类型构成决策变量;在服务器内利用Elman神经网络建立植物各影响因素矩阵X与植物健康指数之间的复杂非线性关系,获得植物培育模型;利用NSGA-Ⅱ算法对植物培育模型进行优化,获得决策变量的一组最优解;将决策变量的该组最优解作为植物的推荐决策X*通过服务器下发至用户的终端设备进行显示;用户根据终端设备显示的推荐决策培育植物。利用本发明能够确定最优的植物培育方案,为植物营造了更好的生活环境。

    用于油井动液面检测的频率估算方法

    公开(公告)号:CN105822289A

    公开(公告)日:2016-08-03

    申请号:CN201610177653.6

    申请日:2016-03-25

    CPC classification number: E21B47/042 E21B47/14 G06K9/00523 G06Q50/02

    Abstract: 本发明公开了一种用于油井动液面检测的频率估算方法,包括以下步骤:采集油井动液面的声场信号,得到采样信号x(n);对采样信号x(n)进行加窗处理,得到加窗函数xw(n);将加窗函数xw(n)进行离散傅里叶变换,得到频谱Xw(k);从频谱Xw(k)中寻找幅值最大的频点、最大频谱幅值Xw(l)和第二大频谱幅值Xw(l±1),其中幅值最大的频点记为第一次迭代时的频率初始值l1;通过插值计算真实频率值λ0;按照公式计算信号的频率fo。有益效果:本算法运用范围广,适用于所有选择的窗函数;计算误差小,受噪声的影响小,具有较好的一致性;计算过程简洁,无需对数据进行预先计算,也不需要存储窗函数的相关参数信息。

Patent Agency Ranking