一种磷化镍-氮掺杂氧化石墨箔复合纳米材料的制备方法

    公开(公告)号:CN108543543B

    公开(公告)日:2019-03-15

    申请号:CN201810395795.9

    申请日:2018-04-27

    Abstract: 一种磷化镍‑氮掺杂氧化石墨箔复合纳米材料的制备方法是以石墨箔、HNO3、H2SO4、氟化铵,硫脲,硝酸镍,超纯水为原料,分别经过氮、硫原子掺杂的氧化石墨箔的制备、水热合成反应、洗净干燥等实现。本发明采用水热法为制备工艺,原料简单易得,通过水热和磷化过程获得了复合材料,实验过程过程简单,操作方便,易实现大规模生产,产品使用过程中可100%回收,所得磷化镍‑氮掺杂氧化石墨箔具有优异的柔性,氮元素不仅在石墨箔上进行掺杂,并能够进入磷化镍的晶格,对电催化析氢具有很好的催化效果,催化过程产品稳定性好,产品均匀性好。此外,该材料还有望在柔性电池、柔性传感器等方面有良好的应用。

    一种磷化镍-氮掺杂氧化石墨箔复合纳米材料的制备方法

    公开(公告)号:CN108543543A

    公开(公告)日:2018-09-18

    申请号:CN201810395795.9

    申请日:2018-04-27

    Abstract: 一种磷化镍-氮掺杂氧化石墨箔复合纳米材料的制备方法是以石墨箔、HNO3、H2SO4、氟化铵,硫脲,硝酸镍,超纯水为原料,分别经过氮、硫原子掺杂的氧化石墨箔的制备、水热合成反应、洗净干燥等实现。本发明采用水热法为制备工艺,原料简单易得,通过水热和磷化过程获得了复合材料,实验过程过程简单,操作方便,易实现大规模生产,产品使用过程中可100%回收,所得磷化镍-氮掺杂氧化石墨箔具有优异的柔性,氮元素不仅在石墨箔上进行掺杂,并能够进入磷化镍的晶格,对电催化析氢具有很好的催化效果,催化过程产品稳定性好,产品均匀性好。此外,该材料还有望在柔性电池、柔性传感器等方面有良好的应用。

    一种多孔TiO2/PEDOT电极的制备方法及超级电容器

    公开(公告)号:CN113192765B

    公开(公告)日:2023-06-20

    申请号:CN202110479706.0

    申请日:2021-04-30

    Abstract: 本发明涉及电极材料技术领域,具体涉及一种多孔TiO2/PEDOT电极的制备方法及超级电容器,其中方法包括:旋涂聚苯乙烯微球水溶液,获得薄膜;采用喷涂法将1~2ml溶液1喷涂到薄膜A,获得薄膜B;将薄膜B放置在抽风橱内进行加热;撤除掩膜板,获得聚苯乙烯微球/四氯化钛电极;将聚苯乙烯微球/四氯化钛电极放置在二氯甲烷溶液中,去除PE基底,获得多孔均匀致密的四氯化钛电极;将四氯化钛电极放置在200℃的高温空气中进行反应,获得TiO2电极;将TiO2电极放置到石英玻璃上喷涂0.5~1ml聚苯乙烯磺酸铁,获得TiO2/聚苯乙烯磺酸铁电极;去除掩膜板,加入3,4乙烯二氧噻吩单体,得到TiO2/PEDOT电极。本发明解决了现有技术反应复杂同时不易控制的技术问题。

    一种非稀土掺杂高温长余辉发光材料及其制备方法

    公开(公告)号:CN112342019B

    公开(公告)日:2022-11-01

    申请号:CN202011270134.7

    申请日:2020-11-13

    Abstract: 本发明属于含无机发光材料的发光材料及其制备方法技术领域,公开了一种非稀土掺杂高温长余辉发光材料及其制备方法。非稀土掺杂高温长余辉发光材料的分子式为Hf1‑x‑yO2:Alx+y;其中0.005≤x≤0.05,0.005≤y≤0.05;其制备方法为,按比例称取原料,并将原料进行混合研磨,得到原料混合粉末备用;将原料混合粉末置于1300℃~1600℃的环境中,煅烧3小时~8小时后冷却至室温,得到煅烧物备用;再将煅烧物进行研磨,制得高温长余辉发光材料。本发明制备的高温长余辉发光材料在100~150℃的温度下也具备较长的发光时间,使用范围更广。

    一种实验室用气敏分析系统

    公开(公告)号:CN113092401B

    公开(公告)日:2022-09-13

    申请号:CN202110347240.9

    申请日:2021-03-31

    Abstract: 本发明涉及实验辅助用设备领域,具体涉及一种实验室用气敏分析系统,包括气箱本体、待测元件、检测器和控制器,气箱本体底部设有存放液体的蒸发槽,气箱本体内设有多个能够移动的隔板,待测元件设于气箱本体内,检测器检测待测元件在气体浓度下的参数值并发送至控制器,控制器内预存有在大气压下待测元件参数的初始值,制器根据参数值与初始值计算待测元件的变化值,控制器根据变化值给该待测元件标记气敏性能标签。本发明以简单的抽隔板方式改变气体浓度,取代了多次使用移液枪来改变气体浓度的繁琐过程,不仅节约了实验材料,而且省去了时间,实现了实验的简单化和快捷化。

    一种基于MOFs材料的超级电容

    公开(公告)号:CN113178341B

    公开(公告)日:2022-03-25

    申请号:CN202110479673.X

    申请日:2021-04-30

    Abstract: 本发明涉及超级电容技术领域,具体涉及一种基于MOFs材料的超级电容,电极为自支撑MOFs电极;自支撑MOFs电极的制备方法包括:在柔性PE膜上压紧聚四氟乙烯掩膜板,获得薄膜A;采用喷涂法将1~2ml溶液A喷涂到薄膜A,获得薄膜B;采用喷涂法将1~2ml溶液B喷涂到薄膜B,获得薄膜C;将薄膜C放置在抽风橱内进行加热;将薄膜C放置在真空中在60℃的温度下保持24h,获得叉指电极A;用去离子水以及乙醇浸泡叉指电极A,清洗2~3次,并去除乙醇;将叉指电极A放置在二氯甲烷溶液中,溶解聚苯乙烯微球与PE膜,获得自支撑MOFs电极。本发明不会增大电极的电阻,也不会对电子的传递造成阻碍,提高了MOFs电极的性能,解决了现有的超级电容的性能低下的技术问题。

    一种可在高温环境下检测乙醇的传感设备及处理方法

    公开(公告)号:CN113189152A

    公开(公告)日:2021-07-30

    申请号:CN202110479665.5

    申请日:2021-04-30

    Abstract: 本发明涉及气敏传感器的敏感材料制备技术领域,具体涉及一种可在高温环境下检测乙醇的传感设备及处理方法,其中,处理方法包括步骤:称量0.35gSnCl4·5H2O将其溶解于10ml去离子水与10ml乙醇配成的溶液中,并用PH=13的NaOH将溶液的PH调节至4;加入1ml聚乙二醇于溶液中,搅拌超声30min,将搅拌后的溶液倒入反应釜中,放入水热干燥箱,水热反应温度为220℃,反应时间为12小时;取出反应釜中的液体,过滤后得到白色沉淀;将白色沉淀倒入烧杯进行干燥处理后得到SnO2粉体;将SnO2粉体在管式炉中进行热处理,最终得到处理好的SnO2薄膜。本发明得到的SnO2薄膜在300~400℃的高温环境中也有较好的响应,能够实现对高温环境中的乙醇进行检测。

    一种基于MOFs材料的超级电容

    公开(公告)号:CN113178341A

    公开(公告)日:2021-07-27

    申请号:CN202110479673.X

    申请日:2021-04-30

    Abstract: 本发明涉及超级电容技术领域,具体涉及一种基于MOFs材料的超级电容,电极为自支撑MOFs电极;自支撑MOFs电极的制备方法包括:在柔性PE膜上压紧聚四氟乙烯掩膜板,获得薄膜A;采用喷涂法将1~2ml溶液A喷涂到薄膜A,获得薄膜B;采用喷涂法将1~2ml溶液B喷涂到薄膜B,获得薄膜C;将薄膜C放置在抽风橱内进行加热;将薄膜C放置在真空中在60℃的温度下保持24h,获得叉指电极A;用去离子水以及乙醇浸泡叉指电极A,清洗2~3次,并去除乙醇;将叉指电极A放置在二氯甲烷溶液中,溶解聚苯乙烯微球与PE膜,获得自支撑MOFs电极。本发明不会增大电极的电阻,也不会对电子的传递造成阻碍,提高了MOFs电极的性能,解决了现有的超级电容的性能低下的技术问题。

    一种紧致有序MOFs材料的制备方法及湿度传感设备

    公开(公告)号:CN113087958A

    公开(公告)日:2021-07-09

    申请号:CN202110479052.1

    申请日:2021-04-30

    Abstract: 本发明涉及传感器材料制备技术领域,具体涉及一种紧致有序MOFs材料的制备方法及湿度传感设备,其中方法包括:叉指电极作为基底,旋涂聚苯乙烯微球水溶液,获得薄膜A;采用喷涂法将1~2ml溶液A喷涂到薄膜A,获得薄膜B;采用喷涂法将1~2ml溶液B喷涂到薄膜B,获得薄膜C;将薄膜C放置在抽风橱内,先在25℃的温度下放置1~2h,后在40℃的温度下放置0.5~1h;再将薄膜C放置在真空中,从40℃升温至60℃,并在60℃的温度下恒温保持0.5~1h;S5、重复S2~S4的步骤3~5次;S6、将薄膜C放置在真空中,并在60℃的温度下保持24h,获得薄膜D;S7、清洗2~3次,去除乙醇;超声2~10min,溶解聚苯乙烯微球,获得紧致有序MOFs薄膜。本发明制备的薄膜形式的MOFs材料能够应用于湿度传感设备。

Patent Agency Ranking