-
公开(公告)号:CN117391072A
公开(公告)日:2024-01-12
申请号:CN202311173762.7
申请日:2023-09-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/279 , G06F40/216 , G06F16/35 , G06N3/0464 , G06N3/09
Abstract: 本发明提供了一种基于遮挡语言模型的文本纠错方法、系统、设备及介质,能够通过无监督学习大量语料文本的方式,完成对文本的智能纠错,不需要人工标记的大量语料。本发明在不需要准备专门的平行语料的情况下完成中文文本纠错的任务,只需要提供大量中文语言的文本给语言模型自动进行训练即可,采用无监督学习大量语言文本的方式拓展了平行语料范围有限造成的局限性,不需要人工标记的大量语料。本发明采用遮挡语言模型的方式进行文本纠错,其过程中通过无监督学习大量语料文本的方式,完成对文本的智能纠错,应用于针对中文文本纠错的系统中,发现并纠错文本中在输入等过程中产生的错误。
-
公开(公告)号:CN116702094A
公开(公告)日:2023-09-05
申请号:CN202310957274.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/26 , G06F18/25 , G06F18/213 , G06F18/22 , G06F18/27 , G06N3/045 , G06N3/044 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及数据处理技术领域,提供一种群体应用偏好特征表示方法,其中方法包括:获取用户的交互数据;基于多模态预训练模型,提取所述交互数据的特征表示;基于所述交互数据的特征表示,确定所述交互数据的群体应用偏好特征;基于所述群体应用偏好特征,对所述用户进行画像。本发明提供的群体应用偏好特征表示方法,能够自适应的针对任意的纯文本数据、纯图像数据、图文混合数据提取联合特征,实现对多模态数据的分析处理,在图文模态下,可以增加特征提取的语义交互能力,使得到的群体应用偏好特征更准确,从而提高用户画像的质量。
-
公开(公告)号:CN109241438B
公开(公告)日:2022-06-24
申请号:CN201811128658.5
申请日:2018-09-27
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F40/30 , G06F40/284
Abstract: 本发明公开了一种基于要素的跨通道热点事件发现方法、装置及存储介质,本发明融合某一领域的新闻报道数据与微博数据,通过联合两个通道提取的要素与文本语义相似度分析,有利于发现该领域热点事件,并且更全面细致的了解热点事件。
-
公开(公告)号:CN106934395B
公开(公告)日:2020-06-30
申请号:CN201710080987.6
申请日:2017-02-15
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。
-
公开(公告)号:CN110889115A
公开(公告)日:2020-03-17
申请号:CN201911081426.3
申请日:2019-11-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F21/56
Abstract: 本发明公开了一种恶意推送行为检测方法及装置,所述方法包括:对应用程序进行过滤,筛选出带有系统通知栏推送的应用程序;对筛选出的应用程序分别进行动态分析和静态分析,获取动态分析结果和静态分析结果;对所述动态分析结果和所述静态分析结果进行研判,确定具有恶意推送行为的应用程序。
-
公开(公告)号:CN109471932A
公开(公告)日:2019-03-15
申请号:CN201811415780.0
申请日:2018-11-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/332 , G06F16/35 , G06F17/27 , G06N3/08
Abstract: 本发明公开了一种基于学习模型的谣言检测方法、系统及存储介质,其中检测方法包括:构建新闻语料库;构建博文语料库;对新闻语料库中的数据进行模型训练,获得第一分类器模型;对博文语料库中的数据进行特征提取,获得训练特征,利用训练特征进行模型训练获得第二分类器模型;利用第一分类器模型和第二分类器模型对社交平台中的博文数据进行谣言检测。本发明通过对新闻数据中的谣言和非谣言数据进行采集构建新闻语料库,再进行模型训练获得第一训练模型;再对社交平台中的谣言和非谣言数据进行采集构建博文语料库,再进行模型训练获得第二训练模型,最后利用两个训练模型对社交平台中的数据进行谣言检测,使最终的检测结果更加准确可靠。
-
公开(公告)号:CN107644199A
公开(公告)日:2018-01-30
申请号:CN201710730447.8
申请日:2017-08-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于特征和区域协同匹配的刚体目标跟踪方法。该方法包括以下步骤:1)在初始图像中选定目标区域,并在目标区域检测SURF特征;2)在目标区域内,以每个SURF特征点为中心构建不变性区域;3)在当前图像到来时,提取其SURF特征,并与初始图像进行基于SURF特征和不变性区域的协同匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明通过对SURF特征在复杂变化下的可重复性规律进行研究,利用SURF特征和区域模板协同匹配的方案求解运动参数,能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。
-
公开(公告)号:CN107506795A
公开(公告)日:2017-12-22
申请号:CN201710729430.0
申请日:2017-08-23
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06K9/6211 , G06K9/3233 , G06K9/4642 , G06K9/6215 , G06K2009/6213 , G06T7/62 , G06T2207/10016
Abstract: 本发明涉及一种面向图像匹配的局部灰度直方图特征描述子建立方法和图像匹配方法。该特征描述子建立方法包括:1)在图像中检测SURF特征以获取图像兴趣点;2)在图像兴趣点的不变性局部邻域内进行灰度信息分布统计,并生成灰度分布直方图;3)基于图像兴趣点的不变性局部邻域及灰度分布直方图,建立特征描述子。进行图像匹配时,首先采用该方法建立图像的特征描述子,然后通过特征描述子对图像的局部特征进行匹配,进而建立图像之间的对应关系。本发明能够使特征描述子在视角、仿射、光照等多种变换下实现更好的匹配性能,并在视频目标跟踪中保持了目标连续变化的自适应性。
-
公开(公告)号:CN106934395A
公开(公告)日:2017-07-07
申请号:CN201710080987.6
申请日:2017-02-15
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。
-
公开(公告)号:CN106897721A
公开(公告)日:2017-06-27
申请号:CN201710058219.0
申请日:2017-01-23
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06K9/3233 , G06K9/4609 , G06K9/6267
Abstract: 本发明涉及一种局部特征与词袋模型相结合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为SURF特征构建分类器;3)将词袋模型与局部特征结合,对每个SURF特征点用视觉单词来表达,形成2维尺度旋转不变空间;4)在当前图像到来时,基于SURF特征实现分类器的自适应匹配,并使用2维尺度旋转不变空间内的视觉单词进行协同匹配,形成匹配点对;5)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。
-
-
-
-
-
-
-
-
-