-
公开(公告)号:CN112164011A
公开(公告)日:2021-01-01
申请号:CN202011085140.5
申请日:2020-10-12
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于自适应残差与递归交叉注意力的运动图像去模糊方法,其特征在于,包括:1)去模糊网络框架的建立;2)浅层特征提取;3)自适应残差过程;4)递归交叉注意力过程;5)图像重建;6)判别网络模型。这种方法能解决运动模糊图像的非均匀性问题,去除伪影且获取更多的图像高频特征,重建出纹理细节丰富的高质量图像。
-
公开(公告)号:CN108399608A
公开(公告)日:2018-08-14
申请号:CN201810172326.0
申请日:2018-03-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于张量字典及全变分的高维图像去噪方法,在高维图像处理研究的基础上,将张量字典学习结合全变分正则项,提出一种张量字典学习结合TV正则项的高维图像去噪模型,然后用交替迭代方法求解模型,得到迭代更新后重建的MSI图像。本发明的优点是将高维图像看成一个张量整体处理,不会损失图像的立体结构信息,同时也考虑了各波段之间的相关性,并且张量字典学习的方式提高了算法的精确度;在不失高维图像空间结构的前提下,利用高阶TV正则项,很好地保存了较完善的边缘信息,取得良好的重建效果。实验结果在主观视觉和客观评价指标两方面均取得较好的效果,能够保留较多的纹理信息和轮廓信息。
-
公开(公告)号:CN108334816A
公开(公告)日:2018-07-27
申请号:CN201810033455.1
申请日:2018-01-15
Applicant: 桂林电子科技大学
Abstract: 本发明公开了基于轮廓对称约束生成式对抗网络的多姿态人脸识别方法,其特征是,包括如下步骤:1)数据预处理;2)轮廓约束生成网络;3)对称约束对抗网络;4)训练平衡网络;5)重建与识别。这种方法能有效解决人脸图像的姿态角度偏转影响、提取到人脸在多姿态下更具鲁棒性的特征,特别在大角度姿态重建下将全局质量和局部细节相互约束,保持了正脸的轮廓特征信息,能满足实际应用中对多姿态人脸识别的高精度需求。
-
公开(公告)号:CN104112286B
公开(公告)日:2017-06-09
申请号:CN201410376417.8
申请日:2014-08-01
Applicant: 桂林电子科技大学
Abstract: 本发明提供了一种基于几何结构特征和自相似性的图像压缩感知重构方法。包括判定图像块的结构类型;使用同步正交匹配追踪算法对每个图像块获得重构估计值;为每个图像块进行局部和非局部相似块匹配;产生初始解集,进行优化,得到候选解集,进而得到图像块的优化重构估计值;将图像块按顺序拼接起来;重构图像。本发明能够有效减少图像压缩感知重构的不确定性,获得对图像更准确的重构估计。
-
公开(公告)号:CN103955920B
公开(公告)日:2017-04-12
申请号:CN201410146864.4
申请日:2014-04-14
Applicant: 桂林电子科技大学 , 桂林宇辉信息科技有限责任公司
Abstract: 本发明提供一种基于三维点云分割的双目视觉障碍物检测方法,包括同步采集两个相同规格的摄像机图像;对双目摄像机进行标定校正并计算三维点云分割阈值;用立体匹配算法和三维重构计算得到三维点云,对基准图做图像分割得到图块;自动检测三维点云的路面高度,利用三维点云分割阈值分割出路面点云、不同位置的障碍物点云和未知区域点云;利用分割得到的点云结合分割后的图块,判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围。本发明在较复杂的环境中仍可检测摄像机与路面高度并自动估算三维分割的阈值,分割出障碍物点云、路面点云和未知区域点云;结束彩色图像分割技术,融合颜色信息判决障碍物和路面的正确性,确定障碍物、路面和未知区域的位置范围,实现高鲁棒性的障碍物检测,具有更高的可靠性和实用性。
-
公开(公告)号:CN103442180B
公开(公告)日:2017-02-08
申请号:CN201310377399.0
申请日:2013-08-27
Applicant: 桂林电子科技大学
Abstract: 本发明的基于SOPC的双目视频拼接装置,包括以NiosII软核处理器为核心的SOPC系统,其一对CMOS图像传感器通过FPGA端口与一对双目视频采集模块分别连接;一对双目视频采集模块一起连接双目视频存储模块;双目视频存储模块输出端的一路经特征提取协处理器与双目视频输出模块相连接,另一路与双目视频显示模块相连接;双目视频输出模块还分别连接NiosII处理器和上位机,双目视频显示模块还连接VGA显示器。本发明的双目视频拼接方法,通过欧氏距离法对特征点进行粗匹配,然后使用KNN法提出部分误匹配点,最后采用RANSAC计算出单应性矩阵,再经由柱面空间转换及线型加权融合,实现一帧双
-
公开(公告)号:CN104077761B
公开(公告)日:2017-01-11
申请号:CN201410293009.6
申请日:2014-06-26
Applicant: 桂林电子科技大学
IPC: G06T5/50
Abstract: 本发明公开了一种基于自适应稀疏表示的多聚焦图像融合方法,根据原始图像中结构特征的不同将子块进行分类,使原始图像分为相同模型、平滑模型和细节模型。然后将相同模型直接放入融合结果图像中,对平滑模型和细节模型分别采用算术平均法和稀疏表示法进行图像块融合。本发明的有优点是能够分割出平滑模型和细节模型,减少稀疏编码的图像块数,从而在确保融合图像主观效果和客观性能指标均优的基础上,缩短了运算时间。
-
公开(公告)号:CN103868460B
公开(公告)日:2016-10-05
申请号:CN201410094119.X
申请日:2014-03-13
Applicant: 桂林电子科技大学
Abstract: 本发明公开了基于视差优化算法的双目立体视觉自动测量方法,1)得到校正后的双目视图;2)利用立体匹配算法以左视图为基图进行匹配,得到初步的视差图;3)对校正后的左视图,目标物体区域为彩色原图,其他非目标区域全为黑;4)根据目标物体区域,获得目标物体区域的完整视差图;5)对完整视差图,根据投影模型获得三维点云;6)对三维点云,进行坐标重投影,合成坐标关联像素图;7)利用形态学的方法,实现自动测量目标物体的长度和宽度。本发明简化了双目测量操作过程;减少了平滑表面的镜面反射、投影缩减、透视失真、低纹理和重复纹理影响;实现了自动化智能化测量,扩展了双目测量的应用范围,为后续的机器人双目视觉提供技术支持。
-
公开(公告)号:CN104483904A
公开(公告)日:2015-04-01
申请号:CN201410673503.5
申请日:2014-12-24
Applicant: 桂林电子科技大学
IPC: G05B19/414
CPC classification number: G05B19/4147
Abstract: 本发明涉及一种基于Powerlink总线的运动控制器,由 MPU模块和分别与MPU模块连接的电源模块、I/O模块、运动控制模块、通信接口、以及两个网络通信接口模块构成。本发明充分利用了Powerlink总线开源、速度快的优势,不仅提高了控制精度还降低了控制器的成本。此外还拥有USB,RS485等丰富接口。
-
公开(公告)号:CN104182734A
公开(公告)日:2014-12-03
申请号:CN201410405891.9
申请日:2014-08-18
Applicant: 桂林电子科技大学
IPC: G06K9/00
Abstract: 本发明公开一种基于LRC和协同表示的两阶段人脸识别方法,第一阶段,运用LRC人脸识别算法计算测试样本与每类训练样本的误差,根据它们之间的相似度量与误差的关系对误差进行排序,并对数据库中的目标进行有效的筛选,筛选出S类训练样本用于下一阶段的识别。第二阶段,用筛选出的S类训练集作CRC人脸识别算法的编码字典,并利用其做精确的分类识别。这样可以在保证方法识别率较高,鲁棒性较好的同时,大大能降低了识别时间,当新目标加入数据库时,不用更新整个人脸数据模型,只需更新某一子类模型,从而减少训练时间;并且,通过第一阶段的训练样本的筛选,大大减小了第二阶段识别中数据字典的大小,节约了全局搜索的时间。
-
-
-
-
-
-
-
-
-