视觉语言模型的提示学习方法及电子设备

    公开(公告)号:CN117057443B

    公开(公告)日:2024-02-02

    申请号:CN202311300751.0

    申请日:2023-10-09

    Abstract: 学习。本申请实施例提供一种视觉语言模型的提示学习方法及电子设备,电子设备可以将第一图像、第二图像、第一文本提示信息及第二文本提示信息输入模型,得到第一检测结果和第二检测结果;基于第一检测结果确定伪标签,基于伪标签与第二检测结果,计算预设损失函数;根据损失值,调整第一文本提示信息和第二文本提示信息,直到预设损失函数收敛,基于第一文本提示信息,确定模型的文本提示信息。由于第一检测结果表示第一图像中目标类别及位置,且第一图像和第二图像由同一图像做不同变换得到,包含目标相同,因此第一检测结果标识第二图像中目

    一种检测模型的处理方法及装置

    公开(公告)号:CN112633496A

    公开(公告)日:2021-04-09

    申请号:CN202011506742.3

    申请日:2020-12-18

    Abstract: 本申请提供一种检测模型的处理方法及装置,涉及机器学习技术领域,可以提高检测模型的检测准确率。该处理方法包括:获取N帧图片;将N帧图片输入到第一检测模型,进行对象检测处理,得到每帧图片中检测框的置信度;根据第一置信度阈值和获取到的检测框的置信度,确定正样本和负样本;正样本包括第一检测框和N帧图片中包括第一检测框的图片,负样本包括第二检测框和N帧图片中包括第二检测框的图片;第一检测框为置信度高于第一置信度阈值的检测框,第二检测框为置信度低于第一置信度阈值的检测框;第一置信度阈值大于第一检测模型对应的置信度阈值;根据正样本和负样本对第一检测模型进行训练,得到第二检测模型。

    生成神经网络模型的方法、装置及存储介质

    公开(公告)号:CN112329909A

    公开(公告)日:2021-02-05

    申请号:CN201910718494.X

    申请日:2019-08-05

    Abstract: 本申请公开了一种生成神经网络模型的方法及装置,属于深度学习领域。本申请通过第一神经网络模型中的N个层来确定得到第二神经网络模型。其中,第一神经网络模型是已经训练好的模型,第二神经网络模型包括第一神经网络模型的N个层,并且,第二神经网络模型中的N个层中除批归一化层之外的其余层的参数均采用第一神经网络模型中的对应层的参数。由此可见,在本申请中,通过第一神经网络模型中的部分层得到的第二神经网络模型可以与第一神经网络模型中对应的层共用参数。这样,只需要训练好一个网络模型,即可根据该训练好的模型得到适配不同运算平台的不同深度的模型,无需重新对不同深度的模型进行训练,省时省力,且节省资源。

Patent Agency Ranking