基于订单批处理的生产与仓储智能联动决策方法及服务平台

    公开(公告)号:CN118428851A

    公开(公告)日:2024-08-02

    申请号:CN202410501297.3

    申请日:2024-04-25

    Applicant: 暨南大学

    Abstract: 本申请涉及基于订单批处理的生产与仓储智能联动决策方法及服务平台,该方法包括:获取预规划的排产信息和当前预规划的仓储信息,排产信息关联对应的生产总成本和生产下线时间序列,仓储信息关联对应的仓储总成本和排库时间序列;对生产总成本、生产下线时间序列、仓储总成本和排库时间序列,利用改进的协同优化算法和动态容差进行协同优化,以更新当前生产耦合变量期望值和当前排库耦合变量期望值;判断完成当次迭代的候选排产信息所对应的生产下线时间序列和候选仓储信息所对应的排库时间序列是否满足预设的一致性约束,并在判断到满足预设的一致性约束时,将对应的候选排产信息和对应的候选仓储信息作为协同规划结果。

    退役动力电池智能仓储方法、装置、智能仓储系统及存储介质

    公开(公告)号:CN118536910B

    公开(公告)日:2025-01-21

    申请号:CN202410887922.2

    申请日:2024-07-03

    Applicant: 暨南大学

    Abstract: 本申请涉及退役动力电池智能仓储方法、装置、智能仓储系统及存储介质,该方法包括:获得待仓储的每个目标AEVB对应的多种目标指标参数;在对目标指标参数进行预处理,生成标准特征参数之后,利用评估分类模型处理标准特征参数,得到与每个目标AEVB对应的分类标签数据;基于仓储库区对应的布局参数信息和多个目标AEVB,利用NSGA‑II算法进行仓储分配规划,生成初始仓储分配信息;确定初始仓储分配信息中所有备选仓储库区对应的第一仓储适应度,根据与分类标签数据中的目标重组热度分类及目标重组热度评分值的对应的目标仓储适应度和第一仓储适应度的差值,对初始仓储分配信息进行仓储规划迭代,直至差值不大于预设阈值,生成对应的目标仓储分配信息。

    生产物流配送资源的配置方法和存储介质

    公开(公告)号:CN117495222B

    公开(公告)日:2025-02-07

    申请号:CN202311584204.X

    申请日:2023-11-25

    Applicant: 暨南大学

    Abstract: 本申请涉及生产物流配送资源的配置方法和存储介质,该方法包括:根据所接收到的配送需求变动信息,确定修正配置信息;在判断到修正配置信息中的配送载体配置方式为目标配置方式时,基于物料目标信息和备选的云车辆供给信息,进行基因编码和种群初始化,生成多个初始结构体编码;利用群体智能全局优化算法,对多个初始结构体编码进行群体优化操作,生成多个第一结构体编码,并基于第一结构体编码所对应的配送配置方案的配送成本适应度和群体智能全局优化算法,对多个第一结构体编码进行种群更新优化,以生成多个候选结构体编码;在多个候选结构体编码中,检测目标结构体编码,并将目标结构提供编码所对应的配送配置方案,作为生产物流配送资源的配置结果。

    基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质

    公开(公告)号:CN118503806A

    公开(公告)日:2024-08-16

    申请号:CN202410720765.6

    申请日:2024-06-05

    Applicant: 暨南大学

    Abstract: 本申请涉及基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质,该方法包括:获取待排序的订单数据,对订单数据进行预处理,以生成预设数据格式的候选订单数据,候选订单数据包括多种目标指标参数;利用TOPSIS法,处理多种目标指标参数,得到每个目标指标参数所对应的权重数据;对多种目标指标参数和每个目标指标参数对应的权重数据,利用秩和比评价法RSR进行秩和比计算,得到与每个目标指标参数对应的实时加权秩和比,将实时加权秩和比输入SVR模型,输出与实时加权秩和比对应的预测加权秩和比;根据预测加权秩和比和预设的分档规则,确定每个订单数据所对应的分档排序结果。通过本申请,解决相关技术中评级订单的方法效率及准确率低的问题。

    面向生产与运输的智能联动决策方法及服务平台

    公开(公告)号:CN118428652A

    公开(公告)日:2024-08-02

    申请号:CN202410501296.9

    申请日:2024-04-25

    Applicant: 暨南大学

    Abstract: 本申请涉及面向生产与运输的智能联动决策方法及服务平台,该方法包括:将更新生成的生产变量期望值和配送变量期望值分别下发至生产规划子系统和输送规划子系统;接收生产规划子系统响应于生产变量期望值所返回的生产变量返回值和输送规划子系统响应于配送变量期望值所返回的配送变量返回值,并判断生产变量返回值和配送变量返回值是否满足预设的产运一致性约束;在判断到生产变量返回值和配送变量返回值不满足预设的产运一致性约束的情况下,重复执行利用预设的协同优化CO算法和动态容差进行协同优化,直至新的生产变量返回值和配送变量返回值满足产运一致性约束,得到联动决策结果。

Patent Agency Ranking