-
公开(公告)号:CN117388708A
公开(公告)日:2024-01-12
申请号:CN202311428167.3
申请日:2023-10-30
Applicant: 暨南大学 , 内蒙古科学技术研究院
IPC: G01R31/367 , G01R31/374 , G01R31/378 , G01R31/382 , G01R31/396
Abstract: 本发明属于动力电池技术领域,具体的说是一种动力电池系统及动力电池系统热失控监测方法,包括动力电池服役模型精准构建端、动力电池服役数据处理研究端与动力电池循环老化衰退端;所述动力电池服役模型精准构建端包括动力电池多尺度映像模型构建模块与动力电池多尺度数字孪生模块;动力电池服役周期数字孪生建模理论,揭示动力电池循环老化衰退过程中多物理场参数动态演变与耦合作用机制,阐明多影响因素耦合作用下动力电池循环老化衰退机理;探究单体不一致性作用下的动力电池多尺度性能衰退规律,形成一套面向动力电池服役周期的主动再制造时域决策方法与理论,以实现动力电池再制造生产效益最大化。
-
公开(公告)号:CN112949733B
公开(公告)日:2022-06-07
申请号:CN202110271569.1
申请日:2021-03-12
Applicant: 暨南大学
Abstract: 本申请涉及故障因子数据的获取方法、装置、电子装置及存储介质,该获取方法包括获取目标设备的运行参数数据;根据故障信息确定设备故障特征,在设备参数数据中检测设备故障特征对应的第一参数数据;利用预设回归模型对第一参数数据进行处理,得到第一故障因子数据,第一故障因子数据包括多个协同影响设备产生故障的单因素故障因子数据;分别确定每个单因素故障因子数据与第一故障因子数据的相关度,根据相关度在第一故障因子数据中筛选候选故障因子数据;利用特征训练模型对候选故障因子数据进行处理,得到第一特征值,并按第一特征值自大到小选取候选故障因子作为目标故障因子数据,通过本申请,解决了相关技术中难以从参数数据中挖掘出故障因子的问题。
-
公开(公告)号:CN110708381B
公开(公告)日:2022-03-08
申请号:CN201910966870.7
申请日:2019-10-12
Applicant: 暨南大学
IPC: H04L67/125 , H04L67/52 , H04L61/10 , G09F27/00 , H04L101/622 , H04L101/681
Abstract: 本发明公开基于ZigBee的智能园林讲解系统及控制方法,该讲解系统设在植物上的植物标签模块、智能讲解终端、无线网络模块和后台控制中心;后台控制中心包括北斗定位模块和数据处理SDK,数据处理SDK与北斗定位模块通过串口耦合连接,并通过北斗定位模块与无线网络模块的第一北斗定位模块无线通讯连接,第一北斗定位模块通过串口耦合连接ZigBee模块,ZigBee模块与植物标签模块的协调节点的第一ZigBee模块和智能讲解终端的第二ZigBee模块无线通讯连接,第二ZigBee模块还与第一ZigBee模块和植物标签模块的参考节点的第三ZigBee模块无线通讯连接,第二ZigBee模块还通过串口与讲解单元耦合连接。
-
公开(公告)号:CN113421043A
公开(公告)日:2021-09-21
申请号:CN202110734162.8
申请日:2021-06-30
Applicant: 暨南大学
Abstract: 本发明提供一种基于可穿戴设备的物联系统及方法,利用可穿戴设备获取员工信息判断岗位和任务的匹配性并将其和任务进行关联,利用可穿戴设备的定位信息匹配最近的叉车并在任务完成后匹配最近停车位、利用可穿戴设备获取符合订单的产品信息并将其与任务建立关联,实现了出货相关事务的相互关联,提高了出货效率以及部门间的协同。
-
公开(公告)号:CN117406123B
公开(公告)日:2024-12-17
申请号:CN202311560884.1
申请日:2023-11-22
Applicant: 暨南大学 , 内蒙古科学技术研究院
IPC: G01R31/392
Abstract: 本发明公开了一种动力电池循环老化回收利用的方法,该方法包括以下步骤:测试动力电池循环老化程度;采用再制造作为回收途径,降低回收成本,实现对动力电池的再利用,通过构建动力电池数字孪生模型,并通过构建动力电池循环老化电容衰退趋势的方程,以方程绘制不同服役时间所对应的动力电池性能衰退曲线,再以曲线的拐点,将动力电池随服役时间循环老化的各个时间段,包括平稳期、急剧期以及报废期反映出来,通过急剧期开始和结束的拐点,作为动力电池主动再制造的上下限,以此对应服役时间段,来匹配达到该服役时间段的动力电池,能够更加准确的实现对该服役时间段内动力电池的主动再制造。
-
公开(公告)号:CN117669984A
公开(公告)日:2024-03-08
申请号:CN202311750332.7
申请日:2023-12-18
Applicant: 暨南大学 , 广东云熵科技有限公司
IPC: G06Q10/0631 , G06N5/02 , G06N3/092 , G06F18/241
Abstract: 本发明提出了基于数字孪生及知识图谱的强化学习的车间调度方法,包括:建立数据接收与存储结构收集多模态数据,根据多模态数据生成标签和元数据,并利用图模型的连接性预测与现有数据相关的标签和元数据;对生成的标签和元数据进行数据质量评估与过滤,所述数据质量评估是根据数据质量评分进行评估;设计多层次车间状态表示并建立车间数字孪生模型;构建知识图谱和可解释强化学习模型;根据可解释强化学习模型生成决策逻辑和解释决策逻辑;根据决策逻辑和车间数字孪生模型搭建实验环境并评估实验性能。本发明综合性地解决了车间调度的效率、成本和解释性问题。
-
公开(公告)号:CN117517974A
公开(公告)日:2024-02-06
申请号:CN202311513965.6
申请日:2023-11-14
Applicant: 暨南大学 , 内蒙古科学技术研究院
IPC: G01R31/367 , G01R31/392
Abstract: 本发明公开了一种表征动力电池循环老化衰退机理的方法,该方法包括以下步骤:孪生数据驱动的动力电池多尺度等效电路模型的构建;多因素耦合影响下动力电池循环老化衰退机理的表征;其中,动力电池循环衰退老化是在多特征工况循环以及多物理场参数耦合的共同作用下产生;形成电池电容多重衰退模型方程式,用以表征动力电池循环老化电容的衰退趋势,从而能够根据方程式所绘制的衰退曲线,来表征动力电池电容随服役周期的变化,通过曲线变化的拐点,作为不同生命周期的切换点,从而清晰的反映动力电池随服役周期变化的电容含量,方便对即将退役的动力电池进行精确的分析,从而选择不同的回收方式进行回收,降低成本和提高电池的利用率。
-
公开(公告)号:CN117406123A
公开(公告)日:2024-01-16
申请号:CN202311560884.1
申请日:2023-11-22
Applicant: 暨南大学 , 内蒙古科学技术研究院
IPC: G01R31/392
Abstract: 本发明公开了一种动力电池循环老化回收利用的方法,该方法包括以下步骤:测试动力电池循环老化程度;采用再制造作为回收途径,降低回收成本,实现对动力电池的再利用,通过构建动力电池数字孪生模型,并通过构建动力电池循环老化电容衰退趋势的方程,以方程绘制不同服役时间所对应的动力电池性能衰退曲线,再以曲线的拐点,将动力电池随服役时间循环老化的各个时间段,包括平稳期、急剧期以及报废期反映出来,通过急剧期开始和结束的拐点,作为动力电池主动再制造的上下限,以此对应服役时间段,来匹配达到该服役时间段的动力电池,能够更加准确的实现对该服役时间段内动力电池的主动再制造。
-
公开(公告)号:CN116307440B
公开(公告)日:2023-11-17
申请号:CN202211456989.8
申请日:2022-11-21
Applicant: 暨南大学 , 广东云熵科技有限公司
IPC: G06Q10/0631 , G06Q50/04
Abstract: 本发明公开了一种基于强化学习的多目标权重学习的车间调度方法及其装置和应用,属于人工智能技术领域。本发明提出了一种基于强化学习的多目标权重学习车间调度方法,通过不断收集、分析车间中的不同目标所衍生的状态数据,进而对多个目标的调度进行不断优化,最终得到最优的调度方式,从而有效优化了车间作业流程,提高生产效率;本发明可根据实际生产状态调整不同优化目标的优先程度,动态性更强,可更好应对不同生产状况;本发明所获得的调度结果与传统的解决多目标车间调度问题的方法相比更佳,对人工智能更好地用于生产具有重要的意义。
-
公开(公告)号:CN112883873B
公开(公告)日:2023-08-01
申请号:CN202110197703.8
申请日:2021-02-22
Applicant: 暨南大学
IPC: G06V20/10 , G06V10/20 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/047 , G06N3/08
Abstract: 本申请涉及一种叶部病害的识别方法、装置、电子装置和存储介质,其中,该叶部病害的识别方法包括:通过获取待识别的植物叶片图像;对所述植物叶片图像进行预处理,得到多幅第一叶片图像;利用注意力机制模型处理多幅所述第一叶片图像,获得多幅所述第一叶片图像对应的第一分类标签,其中,所述注意力机制模型被训练为用于根据叶片图像得到与该叶片图像对应的分类标签,所述分类标签包括该叶片图像对应各种叶部病害类别的病害概率;根据所述第一分类标签确定所述植物叶片图像的识别结果。通过本申请,解决了相关技术中叶部病害识别费时费力、时效性低的问题,实现了叶部病害的实时检测识别。
-
-
-
-
-
-
-
-
-