基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法

    公开(公告)号:CN108508082B

    公开(公告)日:2019-02-26

    申请号:CN201810226773.X

    申请日:2018-03-19

    Abstract: 基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法,该方法由基于棱边元的退化磁矢位法、基于节点元的温度场计算方法、基于快速傅里叶变换的频域叠加法和基于能量等效原理的能量等效法组成;实现该方法时,首先,根据脉冲涡流红外无损检测实验确定相关数值模拟参数,包括:激励线圈尺寸、激励波形、被检试样尺寸、被检试样材料物性、提离距离等;然后,基于退化磁矢位法和频域叠加法开发脉冲涡流场数值计算程序,并将上述相关数值模拟参数导入,计算得到被测试样中的涡流分布情况;最后,基于节点元和能量等效法开发温度场计算程序,并将之前计算得到的被测试样中的涡流值导入,计算得到被测试样中的温度分布情况。

    基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法

    公开(公告)号:CN108508082A

    公开(公告)日:2018-09-07

    申请号:CN201810226773.X

    申请日:2018-03-19

    Abstract: 基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法,该方法由基于棱边元的退化磁矢位法、基于节点元的温度场计算方法、基于快速傅里叶变换的频域叠加法和基于能量等效原理的能量等效法组成;实现该方法时,首先,根据脉冲涡流红外无损检测实验确定相关数值模拟参数,包括:激励线圈尺寸、激励波形、被检试样尺寸、被检试样材料物性、提离距离等;然后,基于退化磁矢位法和频域叠加法开发脉冲涡流场数值计算程序,并将上述相关数值模拟参数导入,计算得到被测试样中的涡流分布情况;最后,基于节点元和能量等效法开发温度场计算程序,并将之前计算得到的被测试样中的涡流值导入,计算得到被测试样中的温度分布情况。

    一种柔性磁饱和脉冲涡流检测探头及检测方法

    公开(公告)号:CN107505388A

    公开(公告)日:2017-12-22

    申请号:CN201710614814.8

    申请日:2017-07-25

    CPC classification number: G01N27/90 G01N27/9006

    Abstract: 一种柔性磁饱和脉冲涡流检测探头及检测方法,该探头包括磁饱和线圈、脉冲涡流激励线圈和检出线圈,其中磁饱和线圈为直径较大的平面螺旋线圈,脉冲涡流激励线圈及检出线圈为等直径平面螺旋线圈;将这三个线圈同轴心累加,层间用绝缘层隔开,并用外绝缘层密封,形成柔性磁饱和脉冲涡流探头;强电压脉冲信号施加给磁饱和线圈,产生强磁场并将被测铁磁性试件饱和,同时低电压脉冲信号通入脉冲涡流激励线圈,脉冲涡流检出线圈测得检出电压信号,实现厚板内面缺陷检测;本发明相对于常规脉冲涡流探头,提升了对铁磁性材料的检测深度,同时适用于对具有复杂表面的结构的无损检测;解决了常规大型磁饱和装置中存在的便携性差、对弯曲表面适用性差的问题。

    基于直流电位信号的应力腐蚀裂纹电导率分布重构方法

    公开(公告)号:CN105259412A

    公开(公告)日:2016-01-20

    申请号:CN201510717868.8

    申请日:2015-10-29

    Abstract: 基于直流电位信号的应力腐蚀裂纹电导率分布重构方法,首先搭建四端子直流电位测量系统,加工制作应力腐蚀裂纹平板试件,并沿裂纹长度方向进行分段切割,获得包含部分应力腐蚀裂纹的切片试件,然后利用搭建的直流电位测量系统测量各个切片试件的电位分布,计算得到电位差分布;进一步利用基于恒定电流场控制方程的电导率分布重构程序和实验检测电位差信号对每个切片试件的电导率分布分别进行重构,获得每个切片试件沿裂纹深度方向的电导率分布;本发明方法可以简单准确的获得导电率不均匀的复杂固体材料的电导率空间分布,具有操作简单,易实现,数据量小的优点,可以广泛应用于固体导电材料的三维电导率分布的定量评估。

    基于四端子实验信号和数值仿真的局域电导率测定方法

    公开(公告)号:CN104062505B

    公开(公告)日:2015-07-08

    申请号:CN201410193554.8

    申请日:2014-05-08

    Abstract: 一种基于四端子实验信号和数值仿真的局域电导率测定方法,首先对待测区域利用四端子检测仪进行扫描测量,在四端子探针的外侧两个端子A、D上施加已知大小的恒定电流I,利用探针内侧两端子B、C测量其间的电位差V,并通过四端子检测仪获取测量电位差和所施加恒定电流的比值;其次,利用有限元数值仿真软件,通过调整待测区域电导率大小,使所得电位差/电流比值的仿真结果与实验测量一致,进而获取待测区域的电导率值;本发明适合于导体、半导体固体构件电导率的定量评估,具有原理简单,操作方便易行,数据量小等优点,可应用于核电结构应力腐蚀裂纹、局部腐蚀减薄等缺陷区域电导率的测定。

    针对高速列车轨道的电磁超声/动生涡流复合检测系统及检测方法

    公开(公告)号:CN114295718B

    公开(公告)日:2025-05-16

    申请号:CN202111613525.9

    申请日:2021-12-27

    Abstract: 本发明公开一种针对高速列车轨道的电磁超声/动生涡流复合检测系统及检测方法,该系统包括检测探头、电磁超声信号发生接收器、信号分离模块、驱动模块、信号调理模块和信号采集与处理模块;该方法采用电磁超声激励模式,并考虑到探头与列车轨道的高速相对运动激发动生涡流的特点,将检出线圈信号分离为电磁超声信号和动生涡流信号,从而得到轨道埋藏裂纹和表面裂纹的深度‑信号特征量标定曲线,最后基于标定曲线对待检轨道裂纹的埋藏/表面属性及深度值进行评估。本发明可同时检出轨道埋藏裂纹和表面裂纹,适用于高速运动列车轨道的检测,在轨道交通等领域拥有极大的应用前景。

    一种涡流-激光-液晶智能材料协同的热障涂层无损检测探头及方法

    公开(公告)号:CN119618089B

    公开(公告)日:2025-04-15

    申请号:CN202510161909.3

    申请日:2025-02-14

    Abstract: 一种涡流‑激光‑液晶智能材料协同的热障涂层无损检测探头及方法,该检测探头包括涡流探头、激光测距探头和探头组合检测件固定装置;该方法对热障涂层陶瓷层厚度、介电常数与热障涂层下方金属基体性能进行综合无损评估。对热障涂层系统进行评估时,反演得到涡流探头至金属基体上表面之间的距离和涂层系统性能参数,借助液晶智能材料、激光测距探头测量激光测距探头与热障涂层陶瓷层上表面之间的距离以及激光测距探头与涡流探头的高度差,进而得到热障涂层陶瓷层厚度。本发明具备非接触、高精度和快速检测的特点,能够有效避免因探头与涂层表面之间的机械接触状态和表面粗糙度等不可控因素带来的机械测量误差,确保热障涂层和金属基体的精准评估。

    复杂结构的涡流红外曲面适型无遮挡传感器及缺陷评价方法

    公开(公告)号:CN115015323B

    公开(公告)日:2024-08-02

    申请号:CN202210619746.5

    申请日:2022-06-02

    Abstract: 复杂结构的涡流红外曲面适型无遮挡传感器及缺陷评价方法,该传感器由激励线圈与附有柔性导磁薄膜的可变形铁氧体磁轭组成。可变形铁氧体磁轭通过调节腿部旋转角度来适应复杂曲面被测体,调控管理磁路位形,消除激励线圈对目标区域温度场的遮挡。柔性导磁薄膜可协助管理磁路位形,同时保护待测曲面试件,避免试件表面被刚性铁氧体划伤。本发明还公开了缺陷评价方法,利用该传感器进行检测时,首先给感应加热单元施加激励,被检测试件在激励传感器作用下温度场发生变化;通过分析红外相机采集到的温度图像序列实现对曲面结构损伤的有效评价。本发明对复杂金属曲面结构表面或近表面亚毫米级微小点蚀性损伤提供了可靠、高精度无损评价方法,具有广泛应用前景。

    基于磁饱和脉冲涡流和信号处理的双金属复合管内衬塌陷检测方法

    公开(公告)号:CN118376681A

    公开(公告)日:2024-07-23

    申请号:CN202410458980.3

    申请日:2024-04-17

    Abstract: 基于磁饱和脉冲涡流和信号处理的双金属复合管内衬塌陷检测方法,该方法由基于磁饱和的脉冲涡流方法和以晚期相关系数为自适应特征量的信号处理方法两部分组成;实现该方法时,首先利用磁轭对双金属复合管外层碳钢进行磁化直至磁饱和,减小外层碳钢与内层不锈钢间的磁阻,使脉冲涡流产生的磁场和涡流场能够穿透外层碳钢进入内层不锈钢,然后对脉冲涡流原始信号进行低通滤波、独立成分分析以及高斯滤波,分别消除高频噪声、工频干扰以及随机噪声,随后以双金属复合管无内衬塌陷情况下滤波后的脉冲涡流晚期信号为基准信号,计算待测双金属复合管滤波后的脉冲涡流晚期信号与基准信号的皮尔逊相关系数,并将该特征量称为晚期相关系数,最后用该特征量和相应的标定曲线来表征双金属复合管的内衬塌陷程度;本发明方法提出了一种经过优化的脉冲涡流方法以及自适应的特征量,实现了双金属复合管内衬塌陷检测,具有很高的理论价值和工程应用价值。

    针对高速列车轨道的被动激励电磁无损检测系统及检测方法

    公开(公告)号:CN112946064B

    公开(公告)日:2024-04-02

    申请号:CN202110149701.1

    申请日:2021-02-03

    Abstract: 本发明公开一种针对高速列车轨道的被动激励电磁无损检测系统和检测方法,该系统包括检测探头、检测辅助装置、驱动模块、信号调理模块和信号采集与处理模块;该方法首先将检测探头以给定提离固定在轨检轮式夹具,驱动轨检车相对标定轨道运动,并将检测探头的检出线圈电压信号通过信号调理和采集与处理模块记录,得到裂纹深度‑信号特征量标定曲线,然后对待检轨道进行检测,得到电压信号;最后基于标定曲线提取实验所得特征量对应的待检轨道裂纹深度值。本发明通过检测探头的永磁体与被测轨道的相对运动作为激励,简单易行且优势突出,适用于高速运动列车轨道的无损检测,在特种设备和轨道交通等领域拥有极大的应用前景,将带来巨大的社会效益。

Patent Agency Ranking