-
公开(公告)号:CN111436926B
公开(公告)日:2021-04-20
申请号:CN202010257349.9
申请日:2020-04-03
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于统计特征和卷积循环神经网络的房颤信号检测方法,通过对两种不同类型不同维度的特征进行融合,得到特征集,使用粒子群优化算法训练支持向量机,并使用带权重的支持向量机对心电信号进行分类,将统计特征和卷积循环神经网络结合起来,有效解决了目前房颤信号检测存在的问题,更加全面的概括了房颤信号的特征,提高了房颤限号检测的精确度。
-
公开(公告)号:CN110755069B
公开(公告)日:2020-10-16
申请号:CN201911027439.2
申请日:2019-10-25
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/0452
Abstract: 一种跳跃突变噪声的动态心电信号基线漂移校正方法,通过准确检测心电信号中包含的跳跃突变区域,并分段单独处理,可以改善传统滤波方法处理该类区域时基线提取不准确导致的心电信号变形问题。适用于各种含有基线漂移的心电信号的基线漂移校正处理,尤其是可穿戴式的动态心电信号。得到的基线漂移校正信号的波形明显优于其他方法。
-
公开(公告)号:CN109620210B
公开(公告)日:2019-10-25
申请号:CN201910080223.6
申请日:2019-01-28
Applicant: 山东科技大学 , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/0402 , A61B5/00
Abstract: 一种基于自编码模式的CNN与GRU结合的心电信号分类方法,通过提取出原始信号中最具有代表性的特征,运用CNN+GRU进行特征提取,节省了空间,节省了很多训练空间,其中采用的GRU(门控循环单元)一方面解决了由于RNN训练时出现的梯度消失和梯度爆炸的问题,另一方面它比LSTM少一个门,更易于计算,能够提高训练效率,GRU优点在于当训练样本少时,可以使用防止过拟合,当训练样本多时,也可以节省很多的训练时间,能够提高网络的学习效率和心电信号识别的精度。
-
公开(公告)号:CN110263684A
公开(公告)日:2019-09-20
申请号:CN201910489830.8
申请日:2019-06-06
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于轻量级神经网络的心电图分类方法,通过单导联心电图数据和轻量级神经网络模型实现心律失常自动分类的方法。首先,肢体II导联心电信号蕴含足够的信息;其次,使用卷积核大小为1的卷积层和全局平均池化层压缩特征维度;最后使用流线型的深度可分离卷积快速提取特征。利用单导联数据集和轻量级神经网络模型可以在保证模型准确率的基础上大幅度提高模型运算速度。
-
-
-