-
公开(公告)号:CN113472742A
公开(公告)日:2021-10-01
申请号:CN202110588732.7
申请日:2021-05-28
Applicant: 中国科学院信息工程研究所
Abstract: 本发明涉及一种基于门控循环单元的内部威胁检测方法和装置。该方法的步骤包括:解析用户审计日志以获取用户动作信息,将每个用户的动作按照时间先后顺序构建用户动作序列;利用门控循环单元GRU从用户动作序列中提取用户行为的时序特征;将提取的时序特征输入LR分类器进行分类,判别其为正常或异常,从而实现内部威胁检测。本发明融合多域的用户活动记录以全面地刻画用户行为,GRU可以更好地捕获用户动作序列的长期依赖,该方案能够实现用户行为细粒度的分析并提高了内部威胁检测的准确率。
-
公开(公告)号:CN109766432B
公开(公告)日:2021-03-30
申请号:CN201810765723.9
申请日:2018-07-12
Applicant: 中国科学院信息工程研究所
Abstract: 本发明涉及一种基于生成对抗网络的中文摘要生成方法和装置。该方法包括:1)通过对给定的中文数据集进行预处理操作形成训练集;2)构建基于生成对抗网络的中文摘要生成模型,并使用训练集对中文摘要生成模型进行训练;3)将待生成摘要的中文文本输入到训练完毕的中文摘要生成模型,得到对应的摘要。本发明使用判别器最小化误差来代替最大生成摘要概率的框架;特别设计了由3个LSTMs组成的判别器,能够更好地捕获特征,辅助分类效果;提出使用以字为单位结合上下文,能够有效提升文本摘要的效率。本发明能够对大规模中文文本进行摘要的自动生成,生成的摘要更自然、连贯,具有可读性。
-
公开(公告)号:CN118760772A
公开(公告)日:2024-10-11
申请号:CN202410736212.X
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。
-
公开(公告)号:CN108492200B
公开(公告)日:2022-06-17
申请号:CN201810124041.X
申请日:2018-02-07
Applicant: 中国科学院信息工程研究所
IPC: G06Q50/00 , G06F16/9535 , G06N3/04
Abstract: 本发明涉及一种基于卷积神经网络的用户属性推断方法和装置。该方法根据用户节点的属性和好友关系,建立自中心网络;然后采用卷积神经网络提取所述自中心网络中用户节点的属性信息和好友关系中所包含的隐藏信息,利用所述隐藏信息推断出用户的缺失属性。针对好友关系无法直接获取或获取难度较大的社交网络,采用神经网络仅利用用户的属性信息对缺失的属性进行分类预测。本发明可以很好的避免人为定义相似度函数的局限性,而且通过卷积核的卷积操作能够更好的表现出不同属性间以及不同的属性维度间的关系,从而能够高效、准确地进行用户缺失属性推断。
-
公开(公告)号:CN110688479A
公开(公告)日:2020-01-14
申请号:CN201910764862.4
申请日:2019-08-19
Applicant: 中国科学院信息工程研究所
IPC: G06F16/34 , G06F16/33 , G06F16/35 , G06F40/295
Abstract: 本发明公开了一种用于生成式摘要的评估方法及排序网络。本发明从三个方面来评估摘要质量:第一,运用语言模型来评估语言的流畅度;第二,使用相似度模型评估文本和摘要之间的语义相关性;第三,为了有效评估实体、专有词的复现程度,引入原文信息量模型来评估。本发明从摘要的语言流畅性、摘要与原文的相关性以及摘要所包含的信息量等多个方面来综合评估摘要的质量,大大提高了评估的准确性。
-
公开(公告)号:CN108492200A
公开(公告)日:2018-09-04
申请号:CN201810124041.X
申请日:2018-02-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明涉及一种基于卷积神经网络的用户属性推断方法和装置。该方法根据用户节点的属性和好友关系,建立自中心网络;然后采用卷积神经网络提取所述自中心网络中用户节点的属性信息和好友关系中所包含的隐藏信息,利用所述隐藏信息推断出用户的缺失属性。针对好友关系无法直接获取或获取难度较大的社交网络,采用神经网络仅利用用户的属性信息对缺失的属性进行分类预测。本发明可以很好的避免人为定义相似度函数的局限性,而且通过卷积核的卷积操作能够更好的表现出不同属性间以及不同的属性维度间的关系,从而能够高效、准确地进行用户缺失属性推断。
-
-
-
-
-