一种基于生成对抗网络的中文摘要生成方法和装置

    公开(公告)号:CN109766432A

    公开(公告)日:2019-05-17

    申请号:CN201810765723.9

    申请日:2018-07-12

    Abstract: 本发明涉及一种基于生成对抗网络的中文摘要生成方法和装置。该方法包括:1)通过对给定的中文数据集进行预处理操作形成训练集;2)构建基于生成对抗网络的中文摘要生成模型,并使用训练集对中文摘要生成模型进行训练;3)将待生成摘要的中文文本输入到训练完毕的中文摘要生成模型,得到对应的摘要。本发明使用判别器最小化误差来代替最大生成摘要概率的框架;特别设计了由3个LSTMs组成的判别器,能够更好地捕获特征,辅助分类效果;提出使用以字为单位结合上下文,能够有效提升文本摘要的效率。本发明能够对大规模中文文本进行摘要的自动生成,生成的摘要更自然、连贯,具有可读性。

    一种基于图文融合的生成式摘要生成方法

    公开(公告)号:CN110704606A

    公开(公告)日:2020-01-17

    申请号:CN201910764261.3

    申请日:2019-08-19

    Abstract: 本发明公开了一种基于图文融合的生成式摘要生成方法,其步骤包括:1)将给定的文本数据集划分为训练集、验证集和测试集;其中,文本数据集中的每一样本是一三元组(X,I,Y),X是文本,I是文本X对应的图像,Y是文本X的摘要;2)对文本数据集的图像进行实体特征提取,并将提取的实体特征表示成与文本同维度的图像特征向量;3)使用训练集和训练集对应的图像特征向量对生成式摘要模型进行训练;4)输入一条文本和对应图像并生成该图像的图像特征向量,然后将该文本及其对应的图像特征向量输入到训练后的生成式摘要模型,得到该文本对应的摘要。本发明生成的摘要可以有效地调整文本中实体的权重,在一定程度缓解未登录词的问题。

    一种基于图文融合的生成式摘要生成方法

    公开(公告)号:CN110704606B

    公开(公告)日:2022-05-31

    申请号:CN201910764261.3

    申请日:2019-08-19

    Abstract: 本发明公开了一种基于图文融合的生成式摘要生成方法,其步骤包括:1)将给定的文本数据集划分为训练集、验证集和测试集;其中,文本数据集中的每一样本是一三元组(X,I,Y),X是文本,I是文本X对应的图像,Y是文本X的摘要;2)对文本数据集的图像进行实体特征提取,并将提取的实体特征表示成与文本同维度的图像特征向量;3)使用训练集和训练集对应的图像特征向量对生成式摘要模型进行训练;4)输入一条文本和对应图像并生成该图像的图像特征向量,然后将该文本及其对应的图像特征向量输入到训练后的生成式摘要模型,得到该文本对应的摘要。本发明生成的摘要可以有效地调整文本中实体的权重,在一定程度缓解未登录词的问题。

    一种基于生成对抗网络的中文摘要生成方法和装置

    公开(公告)号:CN109766432B

    公开(公告)日:2021-03-30

    申请号:CN201810765723.9

    申请日:2018-07-12

    Abstract: 本发明涉及一种基于生成对抗网络的中文摘要生成方法和装置。该方法包括:1)通过对给定的中文数据集进行预处理操作形成训练集;2)构建基于生成对抗网络的中文摘要生成模型,并使用训练集对中文摘要生成模型进行训练;3)将待生成摘要的中文文本输入到训练完毕的中文摘要生成模型,得到对应的摘要。本发明使用判别器最小化误差来代替最大生成摘要概率的框架;特别设计了由3个LSTMs组成的判别器,能够更好地捕获特征,辅助分类效果;提出使用以字为单位结合上下文,能够有效提升文本摘要的效率。本发明能够对大规模中文文本进行摘要的自动生成,生成的摘要更自然、连贯,具有可读性。

Patent Agency Ranking