-
公开(公告)号:CN118760772B
公开(公告)日:2025-04-01
申请号:CN202410736212.X
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。
-
公开(公告)号:CN118779746A
公开(公告)日:2024-10-15
申请号:CN202410746408.7
申请日:2024-06-11
Applicant: 中国科学院信息工程研究所
IPC: G06F18/2415 , G06N3/042 , G06N3/0455
Abstract: 本发明涉及一种基于关系向量的异配图表示学习方法和系统。该方法是一种变分GNN模型,创新性地将细粒度关系学习融入到消息传递过程中,从而实现对图上的同配性和异配性的建模。该方法在统一的框架中对关系向量生成和节点表示进行建模,从而能够更直接地将关系向量学到的知识转化为节点表示,其中编码器实现关系向量生成,解码器实现节点表示。本发明通过引入关系向量建模了异配图的边复杂语义关系,从而促进了异配图中异配结构的建模,能够实现更好的分类结果。
-
公开(公告)号:CN118760745A
公开(公告)日:2024-10-11
申请号:CN202410736214.9
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种面向知识图谱复杂逻辑推理的生成式方法。本发明包括查询转换模块和扩散推理模块,逻辑查询转换模块将一阶逻辑查询转换为输入序列,扩散推理模块展示了前向和后向的双向生成过程,并设计了一个结构增强自注意力机制的变换器。查询转换模块将符号化的一阶逻辑查询转换为自然语言输入序列,扩散推理模块通过前向过程和后向过程的多步生成过程来捕捉复杂逻辑查询的复合分布;同时,在扩散模型的转换器中设计了一个结构增强的自注意力机制,以有效地融合知识图谱中重要的结构特征。本发明通过对扩散中间过程的多粒度控制进一步保证了模型的可控性和可解释性;相较于其他基线方法实现了更好的知识图谱推理结果。
-
公开(公告)号:CN118760772A
公开(公告)日:2024-10-11
申请号:CN202410736212.X
申请日:2024-06-07
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于多视图蒸馏增强的实体链接方法。本方法包括:1)多视图实体表征:将每个实体原本篇章级的文本描述分成多个句子级的视图,对每一视图独立地经过语言模型进行编码,得到每一句子视图对应的向量表征;从中选择一个和提及最相关的视图的向量表征作为实体的向量表征,以避免与提及无关的信息被引入到实体表征中;2)多视图蒸馏增强:在引入了细粒度的视图表征后,通过交叉对齐和自对齐机制,分别在原始的实体层次以及细粒度的视图层次两个维度上对齐学生模型和教师模型间的相关性分数分布,从而促进教师模型到学生模型的细粒度知识蒸馏。本发明促进了实体链接系统的整体性能的提升。
-
-
-