一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法

    公开(公告)号:CN106934395B

    公开(公告)日:2020-06-30

    申请号:CN201710080987.6

    申请日:2017-02-15

    Abstract: 本发明涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。

    基于学习模型的谣言检测方法、系统及存储介质

    公开(公告)号:CN109471932A

    公开(公告)日:2019-03-15

    申请号:CN201811415780.0

    申请日:2018-11-26

    Abstract: 本发明公开了一种基于学习模型的谣言检测方法、系统及存储介质,其中检测方法包括:构建新闻语料库;构建博文语料库;对新闻语料库中的数据进行模型训练,获得第一分类器模型;对博文语料库中的数据进行特征提取,获得训练特征,利用训练特征进行模型训练获得第二分类器模型;利用第一分类器模型和第二分类器模型对社交平台中的博文数据进行谣言检测。本发明通过对新闻数据中的谣言和非谣言数据进行采集构建新闻语料库,再进行模型训练获得第一训练模型;再对社交平台中的谣言和非谣言数据进行采集构建博文语料库,再进行模型训练获得第二训练模型,最后利用两个训练模型对社交平台中的数据进行谣言检测,使最终的检测结果更加准确可靠。

    一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法

    公开(公告)号:CN106934395A

    公开(公告)日:2017-07-07

    申请号:CN201710080987.6

    申请日:2017-02-15

    Abstract: 本发明涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。

    一种局部特征与词袋模型相结合的刚体目标跟踪方法

    公开(公告)号:CN106897721A

    公开(公告)日:2017-06-27

    申请号:CN201710058219.0

    申请日:2017-01-23

    CPC classification number: G06K9/3233 G06K9/4609 G06K9/6267

    Abstract: 本发明涉及一种局部特征与词袋模型相结合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为SURF特征构建分类器;3)将词袋模型与局部特征结合,对每个SURF特征点用视觉单词来表达,形成2维尺度旋转不变空间;4)在当前图像到来时,基于SURF特征实现分类器的自适应匹配,并使用2维尺度旋转不变空间内的视觉单词进行协同匹配,形成匹配点对;5)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。

Patent Agency Ranking