-
公开(公告)号:CN113962447A
公开(公告)日:2022-01-21
申请号:CN202111172277.9
申请日:2021-10-08
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及复杂设备运行参数处理分析技术领域,具体的说是一种能够有效降低复杂设备维护成本、提高设备运行可靠性的基于改进粒子群算法的复杂设备批量长期维修计划优化方法,通过从整个机队的角度考虑发动机实际的送修时间,并从单一设备全寿命周期内维修成本最小的角度考虑复杂设备队列的长期维修计划的优化,从而建立机队长期维修计划优化模型,针对标准粒子群算法易陷入局部收敛的情况,提出一种改进粒子群算法,增强粒子群跳出局部收敛的能力,采用改进粒子群算法求解机队长期维修计划优化模型,为机队长期维修计划提供理论层面的支持。
-
公开(公告)号:CN111598161A
公开(公告)日:2020-08-28
申请号:CN202010406716.7
申请日:2020-05-14
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明披露了一种基于CNN迁移学习的发动机气路状态诊断系统,所述诊断系统包括源域和目标域,所述源域包括一CNN模块,其特征在于:所述CNN模块包括一个内层和三个全连层,所述内层由两个卷积层、一个池化层组成,并以预设的源域训练集对所述CNN模块进行训练,待所述CNN模块训练完成,将训练完成的所述CNN模块中的所述内层迁移到所述目标域并保持不变,作为所述目标域的发动机状态特征映射模型;所述目标域还包括一SVM模块,所述SVM模块对经所述内层映射的发动机小样本故障数据进行诊断和分类,从而输出发动机故障类别。
-
公开(公告)号:CN108182452B
公开(公告)日:2018-11-20
申请号:CN201711472261.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种基于分组卷积自编码器的航空发动机故障检测方法及系统,其中方法包括:变量分组步骤、基于变量之间的相关性将飞机通讯寻址与报告系统数据的变量分成多个变量组;特征提取步骤、采用卷积去噪自动编码器模型独立地提取每个变量组的特征;故障识别步骤、将所有变量组的特征融合起来形成特征向量,基于该特征向量采用支持向量机来识别故障样本。本发明不需要大量的专家知识经验,避免了繁琐的数据预处理工作,在没有大量良好的有标签样本的情况下仍然具有较好的综合故障检测性能,且鲁棒性好,适合于工程实践,计算与时间成本较低。
-
公开(公告)号:CN107886126B
公开(公告)日:2018-11-20
申请号:CN201711102389.0
申请日:2017-11-10
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种基于动态集成算法的航空发动机气路参数预测方法及系统,其中方法包括:基于迭代算法对训练样本集进行学习得到基学习机,并使用基学习机对测试样本集进行预测,得到每个基学习机的预测结果;在所述训练样本集中选择测试样本的近邻样本,评估每个基学习机在近邻样本的局部性能动态确定每个基学习机的权值;基于所述每个基学习机的权值,利用加权核密度估计将每个基学习机的预测结果集成得到最终预测结果。本发明通过量化评估各学习机的局部性能,提出了动态加权核密度估计组合方法,可用于对航空发动机气路参数序列的预测任务中,不受离群值和样本不对称分布的影响,实验结果表明能够有效提高集成学习算法的预测精度。
-
公开(公告)号:CN108182452A
公开(公告)日:2018-06-19
申请号:CN201711472261.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学(威海)
CPC classification number: G06K9/6269 , G06N3/0454
Abstract: 本发明涉及一种基于分组卷积自编码器的航空发动机故障检测方法及系统,其中方法包括:变量分组步骤、基于变量之间的相关性将飞机通讯寻址与报告系统数据的变量分成多个变量组;特征提取步骤、采用卷积去噪自动编码器模型独立地提取每个变量组的特征;故障识别步骤、将所有变量组的特征融合起来形成特征向量,基于该特征向量采用支持向量机来识别故障样本。本发明不需要大量的专家知识经验,避免了繁琐的数据预处理工作,在没有大量良好的有标签样本的情况下仍然具有较好的综合故障检测性能,且鲁棒性好,适合于工程实践,计算与时间成本较低。
-
公开(公告)号:CN115455800A
公开(公告)日:2022-12-09
申请号:CN202110645925.1
申请日:2021-06-09
Applicant: 哈尔滨工业大学(威海)
IPC: G06F30/27 , G06F17/16 , G06N3/08 , G06F119/02
Abstract: 本发明涉及一种基AdaLMBP神经网络模型的航空发动机性能状态预测方法,其特征在于,获取航空发动机燃油流量数据,并对航空发动机的燃油流量数据进行预处理,得到数据;将数据整理成数据集,将数据集{X,Y}拆分为训练集{Xtrain,Ytrain}和测试集{Xtest,Ytest},搭建AdaLM‑BP神经网络模型,使用训练集训练模型,完成模型训练后,测试并应用模型,还包括首先从发动机采集数据,然后经过预处理得到模型可用的数据,此后上述三层AdaLM‑BP神经网络模型进行数据训练,用于预测未来的趋势,本发明针对航空发动机性能预测方法存在的问题,使模型的优化算法改变误差下降方向,收敛到“好”的局部最小;通过实验使用CFM56‑5B型发动机采集的燃油流量数据验证了该性能预测方法的有效性。
-
公开(公告)号:CN112686372A
公开(公告)日:2021-04-20
申请号:CN202011577005.2
申请日:2020-12-28
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明公开了一种基于深度残差GRU神经网络的产品性能预测方法,包括以下步骤:步骤一、构建深度残差GRU神经网络模型;步骤二、基于深度残差GRU神经网络对产品性能进行预测,预测结果用于指导复杂精密产品零部件装配。本发明提出了一种新的深度学习方法,即深度残差GRU神经网络(DRGRUNN),将GRU神经网络与残差神经网络的优点有机集成,以提高网络对装配参数特征学习能力,实现复杂精密产品性能高精度预测。
-
-
公开(公告)号:CN108563806A
公开(公告)日:2018-09-21
申请号:CN201810010555.2
申请日:2018-01-05
Applicant: 哈尔滨工业大学(威海)
IPC: G06F17/50
CPC classification number: G06F17/5095 , G06F17/5009
Abstract: 本发明涉及一种基于相似性的发动机气路参数长期预测方法及系统,其中方法包括:通过计算得到目标轨迹和各个历史轨迹之间的逐点距离特征的时间序列,并利用得到的逐点距离特征的时间序列评估目标轨迹与各个历史轨迹之间的统计距离利用得到的统计距离和历史轨迹样本,针对每个预测时间点上的单个特征元素,使每个历史轨迹样本都生成一个目标轨迹的假想的高斯函数形式的概率密度估计,成为一个假想高斯元集合;通过降序聚合方法对获得的假想高斯单元集合进行聚合,得到目标特征的高斯混合模型。本发明相对于自回归滑动平均、反向传播神经网络和传统的基于相似性的预测方法相比具有更高的预测精度。
-
公开(公告)号:CN107292457A
公开(公告)日:2017-10-24
申请号:CN201710656708.6
申请日:2017-08-03
Applicant: 哈尔滨工业大学(威海)
CPC classification number: G06Q10/04 , G06K9/6269
Abstract: 本发明涉及小样本预测问题技术领域,具体的说是一种适用于小样本预测的消极支持向量机模型,本发明将ε-支持向量机回归模型和消极预测方法结合起来,建立了一种消极支持向量机模型。与ε-支持向量机回归模型中样本中的所有个体具有相同的不敏感损失函数不同,消极支持向量机模型中的不敏感损失函数取决于样本中个体与待预测个体的距离,为了求解消极支持向量机模型,引入广义拉格朗日函数,得到原问题的对偶问题,通过对对偶问题的求解获得了原问题的解,消极支持向量机模型能够综合传统支持向量机与消极预测方法的优点,不仅泛化性较好,还能改善局部精度。
-
-
-
-
-
-
-
-
-