一种基于针尖轨迹运动加工微纳复合结构的装置及方法

    公开(公告)号:CN111732073A

    公开(公告)日:2020-10-02

    申请号:CN202010561529.6

    申请日:2020-06-18

    Abstract: 一种基于针尖轨迹运动加工微纳复合结构的装置及方法,涉及一种加工微纳复合结构的装置及方法。z向竖直微米定位台固定在基座上方,用于带动刀具初步逼近加工工件表面,一维压电纳米位移台固定在z向竖直微米定位台上,用于控制加工深度,针尖轨迹运动加工模块固定在一维压电纳米位移台上,用于控制刀具的竖直公转运动,x-y向水平定位台固定在基座上表面,用于控制水平加工进给运动,水平调平台固定在x-y向水平定位台上,用于安装加工工件并可调节消除其表面倾斜度,数码显微镜固定在基座上表面,用于检测对刀。能够在金属表面上加工出侧壁带有亚波长光栅的V形微沟槽结构,实现了对微纳复合分级结构的加工。

    一种基于AFM的微纳流控芯片制备方法

    公开(公告)号:CN109179313B

    公开(公告)日:2020-08-28

    申请号:CN201811002922.0

    申请日:2018-08-30

    Abstract: 本发明公开了一种基于AFM的微纳流控芯片制备方法,所述方法步骤如下:一、基于原子力显微镜的纳沟槽加工:应用AFM探针在金属样品表面进行纳米沟槽的加工;二、光刻法微沟槽加工:采用光刻法在单晶硅基底上进行微沟槽的加工;三、PDMS微纳沟槽转印:通过PMDS两次转印得到分别带有微、纳沟槽的PDMS单片;四、PDMS片键合:采用氧等离子体清洗机对具有微、纳沟槽的PDMS单片进行键合,得到所需结构的微纳流控芯片。本发明主要基于AFM的刻划加工,由于AFM刻划加工操作简便且效率高,所以采用本方法制备微纳流控芯片更高效。本发明的方法制备流程相对简单,使用材料为PDMS、单晶铜片等,成本相对较低。

    一种采用AFM探针纳米刻划加工复杂三维微纳米结构的方法

    公开(公告)号:CN105347298A

    公开(公告)日:2016-02-24

    申请号:CN201510877418.5

    申请日:2014-08-07

    Abstract: 一种采用AFM探针纳米刻划加工复杂三维微纳米结构的方法,属于微纳米结构加工领域。为了解决复杂三维微纳米结构加工问题,所述装置包括AFM、X方向精密工作台、Y方向精密工作台,X方向精密工作台底座固连在Y方向精密工作台的滑块上,X方向定位工作台的滑块进行X方向运动,Y方向精密工作台底座固连在AFM样品台上,Y方向定位工作台的滑块进行Y方向运动。本发明提出的三种方法分别通过对同一套商用AFM以及高精度定位平台系统的不用控制和参数设置,实现采用AFM探针纳米刻划技术加工复杂三维微纳米结构的加工。本发明能够在较低成本下解决复杂三维微纳米结构的加工问题,且方法简单,装置及加工实现成本相对较低。

    一种基于针尖轨迹运动加工微纳复合结构的装置及方法

    公开(公告)号:CN111732073B

    公开(公告)日:2024-05-14

    申请号:CN202010561529.6

    申请日:2020-06-18

    Abstract: 一种基于针尖轨迹运动加工微纳复合结构的装置及方法,涉及一种加工微纳复合结构的装置及方法。z向竖直微米定位台固定在基座上方,用于带动刀具初步逼近加工工件表面,一维压电纳米位移台固定在z向竖直微米定位台上,用于控制加工深度,针尖轨迹运动加工模块固定在一维压电纳米位移台上,用于控制刀具的竖直公转运动,x‑y向水平定位台固定在基座上表面,用于控制水平加工进给运动,水平调平台固定在x‑y向水平定位台上,用于安装加工工件并可调节消除其表面倾斜度,数码显微镜固定在基座上表面,用于检测对刀。能够在金属表面上加工出侧壁带有亚波长光栅的V形微沟槽结构,实现了对微纳复合分级结构的加工。

    基于AFM纳米铣削及化学腐蚀加工的表面增强拉曼基底制备方法

    公开(公告)号:CN114411152B

    公开(公告)日:2023-08-29

    申请号:CN202210023523.2

    申请日:2022-01-10

    Abstract: 本发明公开了一种基于AFM纳米铣削及化学腐蚀加工的表面增强拉曼基底制备方法,所述方法包括如下步骤:步骤(1)采用磁控溅射法在基底表面依次制备金膜、银膜和金膜;步骤(2)基于AFM的纳米铣削加工系统,在金‑银‑金复合膜表面纳米铣削加工周期纳米结构;步骤(3)将纳米铣削加工得到的周期纳米结构放入浓硝酸中,对周期纳米结构边缘裸露的银层进行化学腐蚀,从而制备得到中空的纳米腔;步骤(4)以化学腐蚀后的带有纳米腔的复合膜周期阵列结构作为拉曼增强基底。该方法可以快速高效的制备结构特征尺寸可控、等离子体共振可调、一致性好的拉曼增强基底。

    一种适用于探索共体反射镜上薄膜制备工艺参数的装置

    公开(公告)号:CN111665580B

    公开(公告)日:2022-05-31

    申请号:CN202010538180.4

    申请日:2020-06-12

    Abstract: 一种适用于探索共体反射镜上薄膜制备工艺参数的装置,属于金属薄膜制备与检测技术领域。本发明包括外部框架、多个支撑柱和多个平面基底,所述外部框架上的四个竖直设置的支撑板上分别设有多个定位孔,所述多个定位孔、多个支撑柱以及多个平面基底数量均相同;每个所述支撑柱一端可拆卸固定插入定位孔内,每个支撑柱另一端设置在外部框架内并与平面基底一端可拆卸固定连接,所述平面基底另一端的端面与自由曲面相切。本发明具有与多面共体反射镜相同的表面粗糙度与相近的空间结构,而且便于检测,可以较为简单、准确、经济地获得沉积的工艺参数和靶基运动。

    一种利用超长纳米线制备电化学纳米点阵列电极的方法

    公开(公告)号:CN111948267A

    公开(公告)日:2020-11-17

    申请号:CN202010844645.9

    申请日:2020-08-20

    Abstract: 一种利用超长纳米线制备电化学纳米点阵列电极的方法,属于纳米电极制备技术领域。本发明是为了简单高效可重复地制备纳米点阵列电极,在含微米沟槽阵列的硅模板上浇注PDMS;在固化完成的PDMS模具上浇注树脂,得到带有微米沟槽阵列的树脂块;在树脂块上沉积一层金属薄膜,用树脂包埋,进行纳米切片,将单个含纳米线阵列的树脂薄片或多个与空树脂薄片交替堆叠的含纳米线阵列的树脂薄片转移至基底上,将导线搭接固定在纳米线阵列的表面,加入树脂封装,将未搭接导线的一端修块抛光,得到纳米点阵列电极。本发明避免了邻近电极的电容和扩散层重叠,且通过对纳米线端面再次修块抛光可获得新的干净的纳米点阵列,有利于纳米点阵列电极的长期重复使用。

    一种基于AFM加工的表面增强拉曼基底的制备方法

    公开(公告)号:CN110316697A

    公开(公告)日:2019-10-11

    申请号:CN201910625403.8

    申请日:2019-07-11

    Abstract: 一种基于AFM加工的表面增强拉曼基底的制备方法,属于拉曼基底制备技术领域。所述方法如下:聚碳酸酯表面纳米点阵结构加工:使用AFM在聚碳酸酯表面进行扫描加工纳米点阵结构;所述聚碳酸酯的厚度为1mm;结构转印:利用PDMS对加工得到的聚碳酸酯表面纳米点阵结构进行转印;结构镀金:在转印后的PDMS表面通过电子束镀膜设备进行镀膜,通过控制镀膜时间和束流大小将镀膜厚度控制在10~30nm。本发明的优点为:表明增强拉曼基底制备流程简单、快速高效,制备的基底结构稳定、一致性好,通过设置AFM扫描加工时所施加的法向载荷可以改变基底的结构尺寸,并且应用PDMS可大量复制基底结构。

    一种微纳双模检测加工模块

    公开(公告)号:CN110316695A

    公开(公告)日:2019-10-11

    申请号:CN201910368975.2

    申请日:2019-05-05

    Abstract: 本发明公开了一种微纳双模检测加工模块,所述模块包括Z向压电位移台、支架、电容式位移传感器、电容固定座、调节座、锁紧支座、上固定环、PZT激振器、下固定环、测试螺钉、柔性铰链、挡环、固定螺母和探针,其中:所述电容式位移传感器固定在电容固定座;所述电容固定座固定在调节座上方;所述上固定环、PZT激振器、下固定环、测试螺钉、柔性铰链、挡环、固定螺母和探针依次固定在调节座下方;所述探针通过固定螺母和测试螺钉固定在柔性铰链上;所述调节座固定在锁紧支座;所述锁紧支座固定在支架上;所述支架固定在Z向压电位移台上。该模块具有在线检测、伺服加工功能,相比较与商业化AFM,具有更大的加工尺寸及材料适用范围。

    一种具有力伺服功能的微机械加工刀架

    公开(公告)号:CN108557756A

    公开(公告)日:2018-09-21

    申请号:CN201810069712.7

    申请日:2018-01-24

    CPC classification number: B82B3/0004 B82B3/0085 B82Y40/00

    Abstract: 本发明公开了一种具有力伺服功能的微加工刀架,所述微加工刀架包括PZT促动器、第一位移传感器、第二位移传感器、丝杆、螺母、旋转环、柔性铰链、探针、导向支架和XY位移平台。本发明利用柔性铰链,将对法向力的测量转为对柔性铰链法向变形量的测量,对位移的测量更简单,更精确;采用环形中心对称柔性铰链,可以有效抵抗侧向力产生的变形,使探针与XY平面尽可能保持垂直,减小偏转角度;利用旋转环配合紧钉螺钉可以调节探针的角度,实现不同角度的微机械加工;通过更换柔性铰链可以改变最大载荷,以适用于加工不同硬度的工件;通过丝杆螺母可以调节第二位移传感器与柔性铰链的间距,便于确定初始间距,方便测量。

Patent Agency Ranking