-
公开(公告)号:CN103024759A
公开(公告)日:2013-04-03
申请号:CN201310020228.2
申请日:2013-01-18
Applicant: 哈尔滨工业大学
Abstract: 基于量化共识的分布式Gossip算法的无线通信方法,涉及无线通信领域。它是为了保证无线通信网络中所有节点量化后通信最终达到共识状态。其方法是:在第t个时隙下,随机唤醒节点i,并在无线传感器网络广播其自身的状态值;节点i的相邻节点都能够接收该状态值,与自己本地状态信息值进行加权平均运算并量化,将该量化结果作为该接收节点的新的状态值;当达到一定迭代次数后,网络中所有节点状态值都是一致的,达到共识状态,实现了基于量化共识的分布式Gossip算法的无线通信。本发明适用于无线通信过程中。
-
公开(公告)号:CN111064072B
公开(公告)日:2020-11-13
申请号:CN201911410419.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管多点加热的高频率复现性的激光稳频方法与装置,所述激光稳频装置包括:稳频控制电路,所述稳频控制电路包括偏振分光镜、光功率转换电路、A/D转换电路、测温电路、微处理器、D/A转换器和加热薄膜驱动器,所述偏振分光镜设置在任一所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述光功率转换电路、A/D转换电路、微处理器、D/A转换器、加热薄膜驱动器和多组加热薄膜依次单向连接,所述温度传感器、测温电路和微处理器依次单向连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置可以有效避免最终的稳频温度点漂移的情况。
-
公开(公告)号:CN104406761B
公开(公告)日:2017-05-03
申请号:CN201410578264.5
申请日:2014-10-25
Applicant: 哈尔滨工业大学
IPC: G01M9/00
Abstract: 霍尔推力器低频振荡时间尺度内羽流发散角测量方法,涉及等离子体推进领域。它是为了获取霍尔推力器低频振荡时间尺度内羽流发散角的动态特性。它通过探针测量每个测量点的低频振荡电流波形图和离子电流波形,选取一个时刻的低频振荡电流值并从离子电流曲线上找到与之对应的点,将采集的点进行拟合后得到沿径向的离子分布曲线,并计算得到该时刻的羽流发散角,以此类推,可以得到羽流发散角随时间的变化曲线。本发明实现了测量羽流发散角的动态特性,获得羽流发散角在低频振荡时间尺度内的变化曲线,为研究霍尔推力器羽流发散角变化提供有效技术途径。本发明适用于霍尔推力器低频振荡时间尺度内羽流发散角测量。
-
公开(公告)号:CN105871440A
公开(公告)日:2016-08-17
申请号:CN201610428749.5
申请日:2016-06-15
Applicant: 哈尔滨工业大学
CPC classification number: H04B7/0421 , H04B7/0854 , H04L5/0048
Abstract: 混合载波多天线分量传输的信号接收方法,涉及无线通信领域。本发明是为了实现混合载波信号在接收端难以进行正确恢复的问题。其接收方法:采用接收天线接收发射的信号,并利用不同的导频序列分别估计出不同子信道的信道状态信息;根据变换阶数α和信号的组合方式,在接收端生成发射信号变换矩阵;根据获得的信道状态信息和得到的发射信号变换矩阵,计算接收信号生成矩阵;利用接收到的信号和收信号生成矩阵,采用最小均方误差(MMSE)方法恢复原始信号。本发明适用于无线通信过程中。
-
公开(公告)号:CN105262528A
公开(公告)日:2016-01-20
申请号:CN201510599933.1
申请日:2015-09-18
Applicant: 哈尔滨工业大学
IPC: H04B7/06
CPC classification number: H04B7/0602
Abstract: 基于加权分数傅立叶变换域的4天线发射分集方法,涉及通信技术领域。本发明为了在信号发射过程中提高抵抗信道衰落的能力。本发明公开了一种基于加权分数傅立叶变换域的4天线发射分集方法。该方法在原有系统的基础上,在发射端引入了加权分数傅立叶变换模块。信号经过加权分数傅立叶变换产生四路信号,两路时域信号和两路频域信号,且每路信号间均有数学约束关系,某一路信号衰落严重时,可通过其他支路信号分量恢复该路信号信息。此外,系统在发射信号前还引入了时延调节模块,对产生的四路信号进行时延调整,保证四路信号分量在接收端能够在同一时刻接收。本发明适用于通信过程中。
-
公开(公告)号:CN103152817A
公开(公告)日:2013-06-12
申请号:CN201310101164.9
申请日:2013-03-27
Applicant: 哈尔滨工业大学
Abstract: 基于广播Gossip算法的分布式时钟同步方法,涉及一种无线传感器网络的分布式时钟同步技术,解决目前所有的广播Gossip算法都面临着不能保证每个节点的时钟收敛于它们初始时钟的平均值的,致使每个节点最终达成的同步时钟会与它们初始时钟的均值有较大的偏差,不利于进行网络维护和数据分析问题。包括步骤:对包含有N个节点的无线传感器网络初始化;使每个节点获得入度信息和加扰参数值;设定节点的两个变量;判断各节点的状态:将定时期满的触发节点的变量值广播给它的外邻节点;对网络中的节点的变量值进行更新;判断无线传感器网络中N个节点的两个变量是否都收敛于同一个同步时钟值;获得时钟同步结果,完成迭代过程。本发明可广泛应用于分布式时钟同步。
-
公开(公告)号:CN111064070B
公开(公告)日:2020-12-11
申请号:CN201911410468.7
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管环绕式测温与精准温度控制点的激光稳频方法与装置,双纵模激光器电源的正负极分别连接在激光管的两端,激光稳频装置还包括导热壳体、导热胶层、加热薄膜、热隔离层、散热层、温度传感器和激光稳频系统,导热壳体嵌套在激光管的外部,导热壳体、导热胶层、加热薄膜、热隔离层和散热层由内到外依次粘接,温度传感器粘接于散热层外表面,测温电路的测温端与加热薄膜连接,测温电路、A/D转换器、微处理器、D/A转换器、加热薄膜驱动电路和加热薄膜依次连接,温度传感器与微处理器连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置可以有效避免由于热传递产生的热迟滞效应。
-
公开(公告)号:CN111064072A
公开(公告)日:2020-04-24
申请号:CN201911410419.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管多点加热的高频率复现性的激光稳频方法与装置,所述激光稳频装置包括:稳频控制电路,所述稳频控制电路包括偏振分光镜、光功率转换电路、A/D转换电路、测温电路、微处理器、D/A转换器和加热薄膜驱动器,所述偏振分光镜设置在任一所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述光功率转换电路、A/D转换电路、微处理器、D/A转换器、加热薄膜驱动器和多组加热薄膜依次单向连接,所述温度传感器、测温电路和微处理器依次单向连接。本发明的方法可以使激光器的频率复现性从10-8提升至10-9,本发明的装置可以有效避免最终的稳频温度点漂移的情况。
-
公开(公告)号:CN111064070A
公开(公告)日:2020-04-24
申请号:CN201911410468.7
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管环绕式测温与精准温度控制点的激光稳频方法与装置,双纵模激光器电源的正负极分别连接在激光管的两端,激光稳频装置还包括导热壳体、导热胶层、加热薄膜、热隔离层、散热层、温度传感器和激光稳频系统,导热壳体嵌套在激光管的外部,导热壳体、导热胶层、加热薄膜、热隔离层和散热层由内到外依次粘接,温度传感器粘接于散热层外表面,测温电路的测温端与加热薄膜连接,测温电路、A/D转换器、微处理器、D/A转换器、加热薄膜驱动电路和加热薄膜依次连接,温度传感器与微处理器连接。本发明的方法可以使激光器的频率复现性从10-8提升至10-9,本发明的装置可以有效避免由于热传递产生的热迟滞效应。
-
公开(公告)号:CN105262528B
公开(公告)日:2018-11-02
申请号:CN201510599933.1
申请日:2015-09-18
Applicant: 哈尔滨工业大学
IPC: H04B7/06
Abstract: 基于加权分数傅立叶变换域的4天线发射分集方法,涉及通信技术领域。本发明为了在信号发射过程中提高抵抗信道衰落的能力。本发明公开了一种基于加权分数傅立叶变换域的4天线发射分集方法。该方法在原有系统的基础上,在发射端引入了加权分数傅立叶变换模块。信号经过加权分数傅立叶变换产生四路信号,两路时域信号和两路频域信号,且每路信号间均有数学约束关系,某一路信号衰落严重时,可通过其他支路信号分量恢复该路信号信息。此外,系统在发射信号前还引入了时延调节模块,对产生的四路信号进行时延调整,保证四路信号分量在接收端能够在同一时刻接收。本发明适用于通信过程中。
-
-
-
-
-
-
-
-
-