-
公开(公告)号:CN117492856B
公开(公告)日:2024-07-23
申请号:CN202311343668.1
申请日:2023-10-17
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本申请提供一种金融物联网中信任评估的低延迟边缘计算卸载方法,该方法包括:响应于接收到评估请求信号,向用户端发送预评估模型;用户端根据接收到的预评估模型,采集用户信息;将采集的用户信息输入预评估模型中进行预评估,获得用户预评估结果,并根据用户预评估结果,为用户的评估任务匹配相应的评估模型;根据评估模型,对用户端的评估任务进行计算;其中,对用户端的评估任务进行计算的方法包括:判断评估任务是否需要卸载到不同的边缘计算节点进行计算,若是,则执行低延迟边缘计算卸载方法,否则,在用户端计算评估任务。本申请避免个人信用评估时用户个人隐私泄露,并为金融物联网的信任评估提供有效计算卸载方案以确保低延迟。
-
公开(公告)号:CN117573989A
公开(公告)日:2024-02-20
申请号:CN202311351738.8
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
IPC: G06F16/9536 , G06F16/9535 , G06F16/901 , G06F18/213 , G06F18/25 , G06Q50/00 , G06N3/042 , G06N3/084 , G16Y10/75
Abstract: 本申请公开了一种基于深度学习和物联网的模糊感知社交推荐方法及系统,其中,基于深度学习和物联网的模糊感知社交推荐方法,包括如下步骤:持久层获取初始数据,对初始数据进行处理,获得源数据,并存储;表示层从持久层中获取源数据,并根据获取的源数据构建混合社交图,并获得混合社交图的特征向量,并将特征向量输入至处理层,其中,混合社交图至少包括:用户子图和项目子图;特征向量至少包括:边的代表向量和节点的代表向量;处理层根据混合社交图的特征向量构建推荐模型,接收应用层发送的访问请求,利用推荐模型根据访问请求预测用户对物品的偏好反馈结果。本申请提高了建模效率和预测准确性。
-
公开(公告)号:CN117555672A
公开(公告)日:2024-02-13
申请号:CN202311359972.5
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本发明公开一种基于象群优化的云计算动态虚拟机分配方法。所述方法包括:初始化种群:将所有虚拟机随机分配到物理机上,并初始化搜索代理;计算适应度值:遍历所有可能的解决方案,并计算适应度值;选择最优解:根据适应度值选择最优解决方案,并将其分配给物理机器;更新搜索代理:用向量运算和随机数生成器来更新搜索代理的位置和速度;判断终止条件:如果达到预设的终止条件,则停止搜索并返回最优解决方案;否则返回继续遍历。本发明的目的在于利用基于象群的优化方法来制定和建模云数据中心的虚拟机布局问题,旨在将虚拟机最优地放置在适当的物理主机上以减少能源消耗和最大化资源利用。
-
公开(公告)号:CN117650530B
公开(公告)日:2024-08-02
申请号:CN202311361086.6
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本发明公开一种基于量子郊狼优化算法的总谐波失真还原方法,包括:初始化候选解种群,每个候选解都由一组参数表示;量子旋转门使用量子旋转门对每个候选解进行编码;可以将每个候选解表示为一个量子态;评估代价函数:评估每个候选解的代价函数值,代价函数是总谐波失真;选择和交叉:选择和交叉优秀候选解以生成新的种群;重复迭代直到满足停止准则为止。本发明设计了一种新的量子郊狼优化算法的总谐波失真还原技术来最小化混合发电系统中的总谐波失真。量子土狼优化算法系统是通过将量子的概念与传统的土狼优化算法结合而来的。本发明对比例积分控制器的积分和比例增益变量进行了调整,从而达到减小总谐波失真的目的。
-
公开(公告)号:CN117650530A
公开(公告)日:2024-03-05
申请号:CN202311361086.6
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
Abstract: 本发明公开一种基于量子郊狼优化算法的总谐波失真还原方法,包括:初始化候选解种群,每个候选解都由一组参数表示;量子旋转门使用量子旋转门对每个候选解进行编码;可以将每个候选解表示为一个量子态;评估代价函数:评估每个候选解的代价函数值,代价函数是总谐波失真;选择和交叉:选择和交叉优秀候选解以生成新的种群;重复迭代直到满足停止准则为止。本发明设计了一种新的量子郊狼优化算法的总谐波失真还原技术来最小化混合发电系统中的总谐波失真。量子土狼优化算法系统是通过将量子的概念与传统的土狼优化算法结合而来的。本发明对比例积分控制器的积分和比例增益变量进行了调整,从而达到减小总谐波失真的目的。
-
公开(公告)号:CN117575017A
公开(公告)日:2024-02-20
申请号:CN202311358800.6
申请日:2023-10-19
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院
IPC: G06N5/04 , G06N3/044 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/084 , G06N7/01 , G06F18/2415 , G06Q10/04 , G06Q50/26 , C02F3/02
Abstract: 本申请公开了一种污水处理过程的概率推理模型构建方法及其系统,其中,污水处理过程的概率推理模型构建方法,包括如下步骤:根据监测数据构造多个数据集,每个数据集均包括:多种污染物的实际的入口数据和实际的出口数据;利用数据集在混合云的私有云模块内创建概率推理模型;对概率推理模型进行优化,获得优化后的概率推理模型。本申请能够在缺乏IPP的情况下,反向推断出污水处理过程中丢失的IPP,能够令污水处理过程的概率推理模型在没有IPP数据的污水处理过程时依然生效,保证了预测结果的可靠性。
-
公开(公告)号:CN117454022A
公开(公告)日:2024-01-26
申请号:CN202311433512.2
申请日:2023-10-31
Applicant: 南昌大学 , 南昌大学新一代信息技术产业研究院 , 江西炬能物联技术研究中心有限公司
IPC: G06F16/9536 , G06N5/04 , G06N7/01
Abstract: 本申请涉及数据处理技术领域,尤其涉及一种基于人工智能物联网的隐式组推荐方法及系统,包括:依据物联网设备采集的用户的交互记录,获得用户的偏好特征;依据用户的偏好特征以及该用户所在用户组中的成员之间的合作关系和竞争意向,得到组推荐结果;待得到组推荐结果后,将组推荐结果提供给用户。本申请通过物联网结构作为底层支撑平台,从而可以实时获取和更新组推荐相关的各类数据,进而能够实时利用在线数据进行更新推荐系统,又可以使用隐性偏好反馈数据提高推荐的准确度,从而保证推荐效果。
-
公开(公告)号:CN116664880A
公开(公告)日:2023-08-29
申请号:CN202310950013.4
申请日:2023-07-31
Applicant: 南昌大学 , 江西炬能物联技术研究中心有限公司 , 南昌大学新一代信息技术产业研究院
IPC: G06V10/70 , G06V10/44 , G06V10/764 , G06V10/774
Abstract: 本发明提供了一种深度伪造反取证图像的生成方法,涉及图像处理与多媒体信息安全技术领域。所述生成方法包括以下步骤:获取图像数据,并构建反取证模型的网络结构;将图像数据区分为训练集图像和测试集图像,将训练集图像输入生成网络并以预设权重提取视觉特征和取证特征,进行特征重组合成伪造图像;判别网络对伪造图像与训练集图像进行分类判别,并将学习到的权重回传至生成网络更新预设权重;重复进行达到预设迭代轮次后生成反取证模型;将测试集图像输入反取证模型,输出反取证图像。本发明生成的反取证图像能够提高取证检测器的检测难度,达到更强的反取证效果,从而能够协助应对新型伪造技术的取证挑战。
-
公开(公告)号:CN119313978A
公开(公告)日:2025-01-14
申请号:CN202411835783.5
申请日:2024-12-13
Applicant: 南昌大学
IPC: G06V10/764 , G06V10/774 , G06V10/80
Abstract: 本发明提供了一种人工智能生成图像公平性检测方法及系统,涉及图像处理技术领域,包括:将自然图像输入预训练的图像编码器获取自然语义,将AI生成图像与自然图像组合后输入图像编码器获取原始图像语义,并输入待训练的公平适配器网络模型进行残差融合,获取自然和生成增强语义;融合自然语义与生成增强语义生成第一混合样本,融合自然语义与自然增强语义生成第二混合样本,并得到混合样本;将混合样本输入分类头计算公平适配器损失函数,得到训练好的公平适配器网络模型;将增强语义输入待训练的分类网络模型获取图像分类语义,生成分类结果。本发明通过构建全新的公平性辅助模块和分类模块,能够提高图像公平性的检测性能。
-
公开(公告)号:CN118334473B
公开(公告)日:2024-08-23
申请号:CN202410757677.3
申请日:2024-06-13
Applicant: 南昌大学
IPC: G06V10/774 , G06V10/80 , G06V10/82 , G06V10/44 , G06N3/0455 , G06N3/084
Abstract: 本发明提出了一种基于语义解纠缠的深度伪造图像检测方法,包括如下步骤:S1、设计第一阶段训练的模型架构;S2、设计第二阶段训练的模型架构;S3、检验多尺度高频特征提取模块和多尺度高频特征融合模块的效果;S4、分析方法检测深度伪造图像的性能。第一阶段训练模型和第二阶段训练模型用于解纠缠图像共同伪造语义、图像特殊伪造语义和图像无关内容语义,以用于提高取证的鲁棒性和泛化能力。设计了自适应的高通滤波器、多尺度高频特征提取模块和多尺度高频特征融合模块,用于充分利用高频信息。提出了双阶段训练的方法,加强语义的解纠缠,提升提取的伪造语义的独立性,提高了语义在取证中的有效性。
-
-
-
-
-
-
-
-
-