-
公开(公告)号:CN117233870B
公开(公告)日:2024-01-23
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN117237677A
公开(公告)日:2023-12-15
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN117233870A
公开(公告)日:2023-12-15
申请号:CN202311518550.8
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G01W1/10 , G06F30/27 , G06F18/214 , G06F119/02
Abstract: 本发明公开了一种基于多气象要素的短临降水集合预报及降尺度方法,包括以下步骤:(1)收集自动气象站逐10分钟站点观测数据;生成格点场数据(2)基于格点场数据,建立用于深度学习模型训练的标准气象序列数据集,并进行归一化处理;(3)构建耦合卷积神经网络‑循环神经网络‑对抗生成神经网络的深度学习模型,利用标准气象序列数据集针对降水进行训练,并通过在网络中增加噪声,生成集合预报;(4)利用超分辨率对生成的降水预报进行降尺度,获得高时空分辨率的短临降水集合预报;本发明将卷积神经网络、循环神经网络与对抗生成神经网络结合,提高了模型的预报真实性;利用超分辨率技术,提高降水预报准确率。
-
公开(公告)号:CN115857062B
公开(公告)日:2023-06-13
申请号:CN202310174997.1
申请日:2023-02-28
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G01W1/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。
-
公开(公告)号:CN118366046B
公开(公告)日:2024-08-30
申请号:CN202410799661.9
申请日:2024-06-20
Applicant: 南京信息工程大学
IPC: G06V20/10 , G06V10/44 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于深度学习并结合地形的风场降尺度方法,包括:(1)采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,最后构成降尺度数据集;(2)搭建基于矢量的神经网络深度学习降尺度模型;(3)基于降尺度数据集对基于矢量的神经网络深度学习降尺度模型进行训练;(4)基于实时低分辨率数值模式预报数据以及高分辨率地面高程数据,通过训练好的模型生成高分辨率降尺度数据。本发明能够实现经纬度分辨率从0.25°×0.25°到0.1°×0.1°的降尺度预测,提高了网络拟合效果,并可以综合把握矢量的方向和大小,产生更具有应用价值、准确率更高的结果。
-
公开(公告)号:CN118227979A
公开(公告)日:2024-06-21
申请号:CN202410652939.X
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/15 , G06F18/214 , G06N3/0464 , G06F30/27 , G06F119/02
Abstract: 本发明公开一种基于改进卷积神经网络利用热带太平洋次表层海温异常的预测ENSO方法,包括以下步骤:(1)采集热带太平洋次表层海温数据、Nino3.4观测数据,并对数据进行预处理,构建训练数据集;(2)搭建加入了注意力机制SENet的CNN模型;(3)基于所述训练集和模型进行训练;(4)生成预测产品利用皮尔森积矩相关系数计算得到ENSO预测;本发明所用数据资源和计算资源少,计算速度更快,预测时效长;突出次表层海温的经向扰动,更能体现热带太平洋次表层海温异常东传的特征。
-
公开(公告)号:CN118033590A
公开(公告)日:2024-05-14
申请号:CN202410437687.9
申请日:2024-04-12
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于改进VIT神经网络的短临降水预报方法,包括以下步骤:(1)采集气象雷达回波资料、风廓线雷达资料,并进行质量控制和特征提取;(2)搭建融合了深层链接和自适应最优权重分配的VIT神经网络模型;(3)构建训练集后对模型进行训练,并引入基于均方根误差和对流面积变化率的损失函数;(4)基于训练好的模型预报未来的雷达回波,并转换得到降水预报场;(5)基于频率匹配法和消空法对降水预报场进行后处理,得到最终的短临降水预报产品;本发明能有效改善小量级降水的空报和大量级降水的漏报,进而进一步提高降水预报技巧。
-
公开(公告)号:CN117236201B
公开(公告)日:2024-02-23
申请号:CN202311525721.X
申请日:2023-11-16
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06F30/27 , G01W1/10 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于Diffusion和ViT的降尺度方法,包括以下步骤:S1建立低分辨率数值模式降水预报与高分辨率降水观测样本,并进行预处理;S2构建Diffusion‑Vision‑Transformer降水预报模型;S3训练模型,直至Diffusion‑Vision‑Transformer的误差收敛,保存模型并进行预测;本发明通过利用Vision Transformer模型代替原始Diffusion模型中的U‑Net结构,大幅提高模型的训练效率,减低模型用于预测的时间。
-
公开(公告)号:CN115857062A
公开(公告)日:2023-03-28
申请号:CN202310174997.1
申请日:2023-02-28
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G01W1/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。
-
公开(公告)号:CN114881381A
公开(公告)日:2022-08-09
申请号:CN202210815291.4
申请日:2022-07-11
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于改进卷积神经网络的城市积水水位预测方法及系统,属于城市内涝水位预测技术领域,所述方法包括:获取当前积水水位、城市地面高程数据、未来预设时间内的降水预报数据;基于未来预设时间内的降水预报数据识别出目标站点周围的雨带,提取雨带的对象属性;将降水预报数据、城市地面高程数据、雨带的对象属性进行预处理后组成输入变量;将输入变量输入到预训练好的基于改进卷积神经网络的深度学习模型中,得到所述未来预设时间内目标站点的积水变率,结合当前积水水位得到所述未来预设时间内的积水水位;所述模型经过训练后具有高度非线性和强鲁棒性,本发明技术方案相较现有技术具有更长的预测时效,有极强的应用价值。
-
-
-
-
-
-
-
-
-