-
公开(公告)号:CN119580255A
公开(公告)日:2025-03-07
申请号:CN202411616287.0
申请日:2024-11-13
Applicant: 南京理工大学
IPC: G06V20/70 , G06V20/10 , G06V10/26 , G06V10/80 , G06V10/82 , G06V10/84 , G06N3/045 , G06N3/0475 , G06N3/084
Abstract: 本发明公开了一种基于离散扩散模型的多模态遥感图像语义分割方法,涉及遥感图像语义分割领域。该方法首先提取每个模态的同构特征,使用参数非共享的全连接层提取每个模态同构特征的注意力权重并进行赋权,将赋权后的模态特征相加得到自适应融合后的多模态特征;然后利用状态转移矩阵在真实概率分布矩阵上添加随机噪声,得到所有类别概率都相等的概率矩阵,通过贝叶斯公式推导出离散扩散模型的逆扩散真实分布;最后将融合的多模态特征作为条件,扩散后的真实概率矩阵作为输入,预测未经扩散的真实概率矩阵。该方法能够有效应对不同模态间的异构性与信息冲突问题,显著提升模型对复杂环境的理解能力,增强其在多种场景中的泛化能力和鲁棒性。
-
公开(公告)号:CN115527605B
公开(公告)日:2023-12-12
申请号:CN202211374655.6
申请日:2022-11-04
Applicant: 南京理工大学
IPC: G16B15/00 , G16B40/00 , G06F18/22 , G06N3/0464 , G06N3/048 , G06N3/042 , G06N3/045 , G06N3/0895
Abstract: 本发明公开了基于深度图模型的抗体结构预测方法,构建特征提取模块,提取目标抗体序列的多序列联配和模板序列以生成初始MSA特征和Pair特征;构建双轨的特征更新模块,使用注意力机制实现MSA特征和Pair特征之间的更新;基于图Transformer构建特征聚合模块,更新和聚合MSA特征、Pair特征,以获取最终嵌入表示;构建距离图预测模块,预测残基对之间的相对距离和方向矩阵;构造势能函数,并对势能函数进行优化,以获取势能最小化的抗体三维结构。本发明实现了对抗体三维结构的高效、准确预测,能够有益于改善蛋白质结构测定费时费力的现状,同时解决抗体同源性数据不足的问题。
-
公开(公告)号:CN115620803B
公开(公告)日:2023-10-20
申请号:CN202211359901.0
申请日:2022-11-02
Applicant: 南京理工大学
IPC: G16B5/20 , G16B15/30 , G16B40/00 , G06F18/2415 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明公开了一种基于跨图注意力的蛋白质相互作用点位预测方法,步骤如下:S1、获取蛋白质数据,对每一对蛋白质分别构建一个表示残基关系的图结构;S2、对于步骤S1中构建的图,提取残基的生信特征构建节点特征矩阵;S3、对于步骤S1中构建的图,提取残基的空间特征构建图邻接特征矩阵;S4、对步骤S3构建的蛋白质图通过图卷积神经网络进行图编码;S5、在步骤S4的基础上,对步骤S3构建的蛋白质图进行跨图信息交互;S6、对步骤S5得到的节点特征进行堆叠,构成残基对特征;S7、将步骤S6得到的残基对特征送入分类器,预测该残基对是否发生了相互作用。本发明的预测方法,具有较强的表征能力和学习能力,在蛋白质相互作用点位预测任务中获得了优异表现。
-
公开(公告)号:CN115222953A
公开(公告)日:2022-10-21
申请号:CN202210626443.6
申请日:2022-06-02
Applicant: 南京理工大学
IPC: G06V10/44 , G06V10/774 , G06V10/26
Abstract: 本发明公开了一种基于多任务学习的弱监督图像语义理解方法,包括以下步骤:获取任务缺失图像,构建多层级任务共享编码器,逐层提取高级语义信息,输入相应的解码器分支;构建公共空间‑任务空间特征映射模块,通过不对齐任务融合模块与任务交互映射模块,映射更新各子任务特征;构建任务自适应特征更新模块,多层级迭代更新不对齐任务特征;构建任务自适应的弱监督图像语义理解框架,建立模型损失函数,将任务缺失的图像数据输入模型,获得语义分割、深度估计、表面法线估计等多任务预测结果。本发明根据任务标签不对齐的数据信息,通过公共空间与任务空间的映射交互,充分融合了不对齐任务特征,迭代生成高质量的多任务预测结果,能够有效处理任务缺失的弱监督问题,同时提高了各任务预测准确率。
-
公开(公告)号:CN112488117A
公开(公告)日:2021-03-12
申请号:CN202011436923.3
申请日:2020-12-11
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于方向诱导卷积的点云分析方法,包括构建方向诱导卷积模块,所述方向诱导卷积模块用于提取点云无序邻域的特征;基于方向诱导卷积模块,构建残差方向诱导卷积模块和最远点采样残差方向诱导卷积模块;根据残差方向诱导卷积模块和最远点采样残差方向诱导卷积模块构建方向诱导卷积网络;将点云数据输入方向诱导卷积网络,获得点云分割结果和分类结果。本发明以一种端到端的方式更好的捕获了点云的局部空间结构,提高了点云分类以及点云分割的准确率。
-
公开(公告)号:CN110909642A
公开(公告)日:2020-03-24
申请号:CN201911108670.4
申请日:2019-11-13
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于多尺度语义特征融合的遥感图像目标检测方法,使用卷积神经网络提取遥感图像的特征图,根据特征图的不同尺度大小,构建出特征金字塔;通过对特征金字塔网络中多层特征的融合,输出整张图像的掩码图和语义特征图;再利用候选区域网络,从掩码加权过的特征金字塔中提取出不同尺度对应的候选区域框;根据这些候选区域框,在特征金字塔网络、全图的语义特征图和原始输入图像上获得候选区域对应的局部特征,对这些多层次的局部区域特征进行融合操作,得到更加鲁棒的区域特征;最后,在感兴趣区域网络中根据融合的区域特征进行各个候选区域的边界框偏移量回归和类别预测。本发明更好地对多种特征进行了融合,提高了遥感图像目标检测的精度。
-
-
-
-
-