一种静止轨道高灵敏度低畸变全谱段高光谱成像系统

    公开(公告)号:CN113532646B

    公开(公告)日:2023-12-12

    申请号:CN202110674029.8

    申请日:2021-06-17

    Abstract: 一种静止轨道高灵敏度低畸变全谱段高光谱成像系统,包括平行光压缩主光学系统、像方扫描系统、中继望远系统、光谱成像系统、面阵探测器组件、信号处理模块。光谱成像系统包括紫外、可见光、短波红外、中波红外、长波红外5个光谱通道,来自目标的光束依次经平行光压缩主光学系统、像方扫描系统、中继望远系统、光谱成像系统,再成像在面阵探测器组件上,面阵探测器组件将入射光信号转化为数字信号,信号处理模块对获得的信号进行处理从而获得目标的光谱信息。本发明利用系统自身的像方扫描系统在静止轨道实现多路高光谱推扫成像模式,扫描系统放置在平行压缩光路之中,在降低整星扫描难度同时,避免了在会聚光路中加入扫描机构带来的光学系统像差问题,有效解决了星载大口径高分辨率高光谱成像关键技术。

    一种大口径红外双谱段目标探测光学系统

    公开(公告)号:CN116643399A

    公开(公告)日:2023-08-25

    申请号:CN202310448284.X

    申请日:2023-04-24

    Abstract: 本发明公开了一种大口径红外双谱段目标探测光学系统,包括:扫描反射镜、孔径光阑、第一反射镜、第二反射镜、第一折转镜、第三反射镜、第四反射镜、第五反射镜、第二折转镜、第三折转镜、中波红外像面和长波红外像面。目标辐射的中波和长波红外光线依次经过扫描反射镜、孔径光阑、第一反射镜、第二反射镜、第一折转镜、第三反射镜、第四反射镜、第五反射镜,中波红外光线经第二折转镜后汇聚在中波红外像面上,长波红外光线经第三折转镜后汇聚在长波红外像面上。本发明可同时实现中波红外和长波红外双谱段成像,具有口径大、扫描角度大、体积紧凑、成像质量好、像方远心度高等优点,可用于空间光学遥感器高分辨率红外成像、高灵敏度目标探测等领域。

    一种静止轨道高灵敏度低畸变全谱段高光谱成像系统

    公开(公告)号:CN113532646A

    公开(公告)日:2021-10-22

    申请号:CN202110674029.8

    申请日:2021-06-17

    Abstract: 一种静止轨道高灵敏度低畸变全谱段高光谱成像系统,包括平行光压缩主光学系统、像方扫描系统、中继望远系统、光谱成像系统、面阵探测器组件、信号处理模块。光谱成像系统包括紫外、可见光、短波红外、中波红外、长波红外5个光谱通道,来自目标的光束依次经平行光压缩主光学系统、像方扫描系统、中继望远系统、光谱成像系统,再成像在面阵探测器组件上,面阵探测器组件将入射光信号转化为数字信号,信号处理模块对获得的信号进行处理从而获得目标的光谱信息。本发明利用系统自身的像方扫描系统在静止轨道实现多路高光谱推扫成像模式,扫描系统放置在平行压缩光路之中,在降低整星扫描难度同时,避免了在会聚光路中加入扫描机构带来的光学系统像差问题,有效解决了星载大口径高分辨率高光谱成像关键技术。

    一种基于光子标记的首光子激光成像系统

    公开(公告)号:CN106646510B

    公开(公告)日:2019-02-19

    申请号:CN201610826918.0

    申请日:2016-09-14

    Abstract: 一种基于单光子标记的首光子激光成像系统,包括光子编码系统、1×N激光器阵列(2),光路折转元件(3)、二维扫描装置(4)、望远镜光学系统(5)、光束聚焦元件(6)、光子解码系统(7)、1×N单光子探测器阵列(8)、多通道时间相关单光子计数系统(9)及控制与数据采集系统(10)。本发明装置采用光子标记与高重频首光子成像算法,能够克服现有首光子激光成像系统脉冲重复频率受限难以提升的问题,提高首光子激光成像系统数据采集的速度,缩短首光子激光成像时间。

    一种宽谱段衍射光学成像系统

    公开(公告)号:CN105005152B

    公开(公告)日:2018-03-09

    申请号:CN201510424114.3

    申请日:2015-07-17

    Abstract: 一种宽谱段衍射光学成像系统,包括:光学模块、探测器模块和图像复原模块;光学模块包括谐衍射光学元件和波前编码元件;光线经过谐衍射光学元件会聚成像,波前编码元件对会聚光线进行像差调制;探测器模块接收调制后的光线进行光电转换,得到图像;图像复原模块结合波前编码元件对会聚光线的调制信息,对探测器模块输出的图像进行处理,去除波前编码元件对会聚光线的调制作用并消除像差,获得图像。本发明以谐衍射光学元件作为光学系统主镜,利用谐衍射光学元件自身消色差的特点以及波前编码技术的像差校正特点,具有较宽的光谱带宽,降低系统复杂度及公差约束,使衍射光学成像系统更易实现。

    一种宽谱段衍射光学成像系统

    公开(公告)号:CN105005152A

    公开(公告)日:2015-10-28

    申请号:CN201510424114.3

    申请日:2015-07-17

    CPC classification number: G02B27/4205 G02B27/4211

    Abstract: 一种宽谱段衍射光学成像系统,包括:光学模块、探测器模块和图像复原模块;光学模块包括谐衍射光学元件和波前编码元件;光线经过谐衍射光学元件会聚成像,波前编码元件对会聚光线进行像差调制;探测器模块接收调制后的光线进行光电转换,得到图像;图像复原模块结合波前编码元件对会聚光线的调制信息,对探测器模块输出的图像进行处理,去除波前编码元件对会聚光线的调制作用并消除像差,获得图像。本发明以谐衍射光学元件作为光学系统主镜,利用谐衍射光学元件自身消色差的特点以及波前编码技术的像差校正特点,具有较宽的光谱带宽,降低系统复杂度及公差约束,使衍射光学成像系统更易实现。

    一种利用阵列透镜实现偏振探测的成像系统

    公开(公告)号:CN104834105A

    公开(公告)日:2015-08-12

    申请号:CN201510159120.0

    申请日:2015-04-03

    CPC classification number: G02B27/283

    Abstract: 一种利用阵列透镜实现偏振探测的成像系统,包括沿光线入射方向依次放置的光线汇集光学系统、第一阵列透镜(6)、阵列偏振片(12)和接收像面(13),第一阵列透镜(6)为由四片相同正透镜构成的2×2阵列,第一阵列透镜(6)位于系统的光阑位置,阵列偏振片(12)为由四片不同偏振态的偏振片构成的2×2阵列。目标入射光线首先经过光线汇集光学系统汇集于光阑处,第一阵列透镜(6)将交汇于光阑处的全视场光束分为四束,阵列偏振片(12)对四束光进行不同偏振态的处理,形成0°、45°、90°和135°四个偏振方向的线偏振光后在接收像面(13)上成像,形成四幅具有不同偏振态的同一目标的图像。本发明可以在不增加载荷体积重量的前提下,实现大视场、高精度的偏振探测。

Patent Agency Ranking