面向大语言模型的词向量生成方法、电子设备及存储介质

    公开(公告)号:CN117113990B

    公开(公告)日:2024-01-12

    申请号:CN202311374453.6

    申请日:2023-10-23

    Abstract: 本发明涉及计算机技术应用领域,提供了一种面向大语言模型的词向量生成方法、电子设备及存储介质,包括:获取待分词的文本,作为目标文本;对目标文本进行分词处理,得到对应的分词集S;基于预设词向量基准表T,获取每个词在每个嵌入矩阵的特征向量;基于预设滑动窗口长度d,将S划分为多个语句片段,得到对应的语句片段集SP;对每个语句片段的特征向量进行融合,得到对应的特征向量;得到SP对应的特征向量F作为目标文本的特征向量。本发明在词向量生成过程中,将多个相邻的词组合视为一个词,能够使得分词的长度得到极大的压缩。此外,将不同词的特征向量通过张量积的方式组合成一个词的特征向量,可以极大的降低可训练参数量。

    一种基于量子的媒体信息的情感预测方法、介质及设备

    公开(公告)号:CN115982395B

    公开(公告)日:2023-05-23

    申请号:CN202310267414.X

    申请日:2023-03-20

    Abstract: 本发明涉及多模态情感预测领域,特别是涉及一种基于量子的媒体信息的情感预测方法、介质及设备。包括如下步骤:对每一模态的表示信息进行预处理,生成每一模态的表示信息对应的复数词向量集A1及A2,对A1及A2进行特征转换处理,生成对应的特征密度矩阵集ρt及ρv;对ρt及ρv进行特征融合处理,生成融合特征fp;根据fp与多个预设情感类型的投影算子,生成fp为每一种预设情感类型的概率值。将P(e1),P(e2),…,P(ew)中最大值对应的情感类型,作为目标媒体信息的情感类型。通过利用量子理论的模型,可以更加有效的捕获不同模态之间的信息交互,进而可以提高对媒体信息所表达情绪的预测结果的精度。

    跨模态数据的匹配方法、装置、设备及介质

    公开(公告)号:CN113656660A

    公开(公告)日:2021-11-16

    申请号:CN202111199634.0

    申请日:2021-10-14

    Abstract: 本公开涉及一种跨模态数据的匹配方法、装置、设备及介质。其中,跨模态数据的匹配方法包括:获取待匹配数据和候选数据,待匹配数据和候选数据的数据模态不同;对待匹配数据和候选数据进行量子化表示,得到待匹配数据与候选数据在量子复合系统内的分布信息;基于分布信息,进行相关性特征计算,得到待匹配数据与候选数据之间的相关性特征参数;在相关性特征参数满足预设匹配条件的情况下,确定待匹配数据与候选数据相互匹配。根据本公开实施例,能够提高跨模态信息的匹配精度。

Patent Agency Ranking