-
公开(公告)号:CN114625861A
公开(公告)日:2022-06-14
申请号:CN202210508811.7
申请日:2022-05-11
Applicant: 之江实验室
IPC: G06F16/332 , G06F16/31 , G06F16/215 , G06F40/205
Abstract: 本发明公开了改进Transformer融入知识的端到端对话方法,首先收集以对话和知识组成的二元组,将该二元组作为训练数据;对训练数据进行清洗,将训练数据组成包括对话、知识和回复的三元组形式,并对该三元组进行预处理;构建由编码运算模块、知识解码器运算模块和解码器运算模块组成的改进的Transformer模型;利用训练数据与三元组训练改进的Transformer模型,并保存;将以对话和知识组成的二元组输入训练好的改进的Transformer模型中,模型预测输出回复结果;用户对模型输出的回复结果进行回复后,将模型输出的回复结果和用户回复拼接到对话记录串中,并选取新的知识输入训练好的改进的Transformer模型中持续进行端到端对话。该方法充分利用Transformer模型结构将知识细致融合用于生成对话。
-
公开(公告)号:CN114610861A
公开(公告)日:2022-06-10
申请号:CN202210508804.7
申请日:2022-05-11
Applicant: 之江实验室
IPC: G06F16/332 , G06F16/33 , G06F16/35 , G06F40/30 , G06N3/04
Abstract: 本发明公开了基于变分自编码器的融入知识和感情的端到端对话方法,所述方法包括:采集情感标签、对话、知识和回复,并进行预处理作为训练数据;搭建由变分自编码器模块和拷贝模块组成的模型,并进行训练;预处理测试数据,将测试数据输入训练好的模型中进行预测,得到回复,持续进行端到端对话。变分自编码器模块的编码模块编码情感标签和输入对话的语义信息。变分自编码器模块的解码模块融入知识和情感用于生成内容。拷贝模块结合解码器生成的内容、输入的对话和知识生成回复输出。本发明方法采用变分自编码器结构以生成丰富的回复;引入情感标签用于控制回复的情感类型;从输入对话和知识中拷贝信息,使生成回复兼具丰富性和可控性。
-
公开(公告)号:CN116795972B
公开(公告)日:2024-01-09
申请号:CN202311010097.X
申请日:2023-08-11
Applicant: 之江实验室
IPC: G06F16/332 , G06F40/211 , G06F40/289 , G06F18/214 , G06F40/30 , G06F18/25 , G06N3/0499 , G06N3/084
Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,将若干个独立表达句输入该模型的生成器,以得到融合句,并将该融合句加入训练数据集,将该训练数据集中的待判别句输入该模型的来源判别器,以确定待判别句是否为原始句的判别结果,根据该判别结果分别确定该来源判别器的来源判别损失及生成器的来源生成损失,根据该来源生成损失及该来源判别损失,对该模型进行训练,其中,该模型的生成器用于将回复用户的若干独立表达句进行融合。本方法通过对模型中的生成器和来源判别器进行对抗训练,以使生成器生成接近原始句的融合句,获得语序正常、内容衔接自然不生硬的句子,(56)对比文件Jiaxian Guo.Long Text Generation viaAdversarial Training with LeakedInformation.arXiv.2017,第1-14页.
-
公开(公告)号:CN115879421B
公开(公告)日:2024-01-09
申请号:CN202310120728.7
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06F40/166 , G06F40/284 , G06F40/117 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了一种增强BART预训练任务的句子排序方法及装置,包括如下步骤:步骤1、从文本资源中提取有序的句子作为原始训练数据;步骤2、对原始训练数据进行预处理;步骤3、用预处理后的训练数据训练BART模型;步骤4、将待排序的句子输入到训练完成的模型中进行预测排序。设计词性标注预训练任务、句子掩盖预训练任务、句子删除预训练任务、句子填充预训练任务和句子旋转预训练任务进一步增强BART模型对句子语义和句间关系的特征提取能力。设计的预训练任务是一种多任务学习的训练方法,也是一种位置可控的句子排序方法,将排序控制信息通过句子标签序列的形式加到输入字符串中,模
-
公开(公告)号:CN116561339A
公开(公告)日:2023-08-08
申请号:CN202310522687.4
申请日:2023-05-10
Applicant: 之江实验室
IPC: G06F16/36 , G06F16/332 , G06F40/295 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本申请涉及一种知识图谱实体链接方法、装置、计算机设备及存储介质,该方法包括:基于问题样本、实体提及样本、知识图谱实体正样本和知识图谱实体邻接子图样本,获取训练数据正样本;基于问题样本、实体提及样本、知识图谱实体负样本和对应的知识图谱实体邻接子图样本,获取训练数据负样本;基于训练数据正样本、训练数据负样本对实体链接初始模型进行训练,得到实体链接模型;将用户问题、实体提及、候选知识图谱实体和对应的知识图谱实体邻接子图输入训练完成的实体链接模型,确定与实体提及链接的目标知识图谱实体,解决了相关技术中存在的问答场景中实体一致性模型效果不佳,实体链接准确性较低的问题。
-
公开(公告)号:CN116127952A
公开(公告)日:2023-05-16
申请号:CN202310088091.8
申请日:2023-01-16
Applicant: 之江实验室
IPC: G06F40/232 , G06F40/126 , G06F18/25 , G06F16/332 , G06F40/216 , G06F16/35 , G06F40/169 , G06F18/22
Abstract: 一种多粒度中文文本纠错方法,包括:对待纠错的中文文本进行预处理;构建名词知识库和文本纠错训练语料;使用预训练语言模型对输入待纠错的文本进行向量编码,并融合文本的语音信息,得到字符向量序列;基于神经网络检测文本中的字粒度和词粒度错误,得到错误字集合和错误词集合;对检测得到的字粒度和词粒度的错误分别进行纠正,得到字、词粒度错误的候选替换字、词;使用多任务学习的方式联合训练整个模型;将字、词粒度纠正结果进行融合,得到纠错后的文本。本发明还包括一种多粒度中文文本纠错装置。本发明可以有效地对文本中的多粒度(字粒度和词粒度)错误进行纠错,并采用多任务学习的方式训练整个模型,具有很好的纠错准确性和实用性。
-
公开(公告)号:CN115879421A
公开(公告)日:2023-03-31
申请号:CN202310120728.7
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06F40/166 , G06F40/284 , G06F40/117 , G06N3/0499 , G06N3/08
Abstract: 本发明公开了一种增强BART预训练任务的句子排序方法及装置,包括如下步骤:步骤1、从文本资源中提取有序的句子作为原始训练数据;步骤2、对原始训练数据进行预处理;步骤3、用预处理后的训练数据训练BART模型;步骤4、将待排序的句子输入到训练完成的模型中进行预测排序。设计词性标注预训练任务、句子掩盖预训练任务、句子删除预训练任务、句子填充预训练任务和句子旋转预训练任务进一步增强BART模型对句子语义和句间关系的特征提取能力。设计的预训练任务是一种多任务学习的训练方法,也是一种位置可控的句子排序方法,将排序控制信息通过句子标签序列的形式加到输入字符串中,模型会根据输入的排序控制信息进行句子排序。
-
公开(公告)号:CN112990119B
公开(公告)日:2021-09-10
申请号:CN202110446571.8
申请日:2021-04-25
Applicant: 之江实验室
Abstract: 本发明属于人工智能领域,具体涉及一种视频多目标人脸表情识别方法和系统,该方法包括如下步骤:S1、抽取视频流中图像帧并提取人脸区域;S2、对视频流中的目标进行人脸跟踪;S3、对跟踪目标进行表情识别;S4、结合历史表情识别结果进行分析。本发明提供的方法,通过融合目标跟踪技术实现视频中多目标表情识别、利用前后帧结果加权提升动态表情识别结果的正确性和鲁棒性,防止视频表情识别结果产生的单帧抖动,同时本发明的视频表情识别系统具有表情分析结果及原始视频存储功能,能够帮助做出合理分析和建议,例如在校教育场景,智能驾驶辅助场景等。
-
公开(公告)号:CN112990122B
公开(公告)日:2021-08-17
申请号:CN202110448783.X
申请日:2021-04-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于视频基础单元分析的复杂行为识别方法。该方法将视频的行为识别拆分为时序上的原子行为,空间上基于目标检测和场景识别提取视频中的物体和背景信息,并将提取的语义信息送入时序模型进行分析。该方法相比以往的视频行为识别,将视频在时间和空间上进行分解为基础任务进行检测和识别,可解释性更强。同时基于此方法,可以针对不同的任务情况,选择性的提取需要的基础单元信息,通过拆分的方法增强了复杂行为识别任务的灵活性。
-
公开(公告)号:CN112990122A
公开(公告)日:2021-06-18
申请号:CN202110448783.X
申请日:2021-04-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于视频基础单元分析的复杂行为识别方法。该方法将视频的行为识别拆分为时序上的原子行为,空间上基于目标检测和场景识别提取视频中的物体和背景信息,并将提取的语义信息送入时序模型进行分析。该方法相比以往的视频行为识别,将视频在时间和空间上进行分解为基础任务进行检测和识别,可解释性更强。同时基于此方法,可以针对不同的任务情况,选择性的提取需要的基础单元信息,通过拆分的方法增强了复杂行为识别任务的灵活性。
-
-
-
-
-
-
-
-
-