一种睡眠慢波-纺锤波耦合信号的提取方法、系统及装置

    公开(公告)号:CN115357126A

    公开(公告)日:2022-11-18

    申请号:CN202211276703.8

    申请日:2022-10-19

    Abstract: 本发明公开了一种睡眠慢波‑纺锤波耦合信号的提取方法、系统及装置,包括以下步骤:步骤S1:得到预处理脑电信号;步骤S2:判断存在慢波及纺锤波;步骤S3:确定慢波信号;步骤S4:确定纺锤波信号;步骤S5:遍历步骤S3和步骤S4,获取时间点重合且满足纺锤波信号最大振幅在慢波信号时间点中的慢波与纺锤波,根据慢波和纺锤波的起止时间点来确定慢波‑纺锤波耦合的起止时间点,得到慢波‑纺锤波耦合信号。本发明降低异常数据对慢波‑纺锤波判定的影响;慢波和纺锤波判定采用多重判定机制,提高慢波和纺锤波判定的抗干扰能力;最终慢波‑纺锤波判定中以慢波中检测到最大纺锤波峰值为判定机制,更全面检测慢波与纺锤波在不同相位的耦合。

    一种应用于心电采集的去除基线漂移的方法及系统

    公开(公告)号:CN115337021A

    公开(公告)日:2022-11-15

    申请号:CN202211276693.8

    申请日:2022-10-19

    Abstract: 本发明公开了一种应用于心电采集的去除基线漂移的方法及系统,包括:信号放大模块:用于将穿戴式心电采集设备采集到的输入信号中的心电信号进行放大处理,得到放大心电信号,并将所述放大心电信号传输至基线漂移去除模块;基线漂移去除模块:用于去除所述放大心电信号的基线漂移,得到去基线漂移心电信号,并将所述去基线漂移心电信号传输至模数转换器;模数转换器:用于对所述去基线漂移心电信号进行转换、编码形成转换后的数字信号,并将所述数字信号传输至发射模块;发射模块:用于将所述数字信号进行发射传输。本发明通过使用自主设计的基线漂移去除模块,去除心电信号中的基线漂移,从模拟前端降低心电信号的噪声、提高心电信号的准确性。

    一种基于位点等效增强的脑机接口解码方法及装置

    公开(公告)号:CN114415842B

    公开(公告)日:2022-06-17

    申请号:CN202210336486.0

    申请日:2022-04-01

    Abstract: 本发明公开了一种基于位点等效增强的脑机接口解码方法及装置,该方法通过对采样点进行跨周期的位点等效变换实现训练数据的数据增强并生成等效排列集合,利用训练数据构建解码模板,对增强数据进行任务相关成分分析求解空间滤波器,根据等效排列集合定向重排测试信号或验证信号,计算空间滤波后重排信号与解码模板的皮尔森相关系数,利用朴素贝叶斯对相关系数分类并进行投票,最终完成稳态视觉诱发电位的解码。本发明的基于位点等效增强的脑机接口解码方法,可实现在小样本和短刺激条件下的稳态视觉诱发电位解码,降低了使用脑机接口的时间成本,提高了脑机接口系统的可用性和友好性,有利于成果向应用转化。

    一种基于脑肌网络图论特征的卒中后康复评估深度学习模型构建方法

    公开(公告)号:CN114587385A

    公开(公告)日:2022-06-07

    申请号:CN202210176342.3

    申请日:2022-02-25

    Abstract: 本发明公开了一种基于脑肌网络图论特征的卒中后康复评估深度学习模型构建方法,涉及神经生理学与机器学习交叉领域。本发明通过脑肌闭环功能网络表征卒中后的病理拓扑结构,在此基础上,进一步基于图论特征建立深度学习模型评定脑卒中患者恢复程度及预测康复进程,重点考虑勾联小世界网络特征与神经网络在评定预测运动功能障碍中的一致特性、以及如何实现多目标学习和联合优化等。本发明利用脑肌电双模态神经电生理信息,构建了新型卒中后住院恢复期运动功能评定和回访期康复效果预测方法,有望提高临床康复评估效率,从而具有重要的应用价值。

    一种基于位点等效增强的脑机接口解码方法及装置

    公开(公告)号:CN114415842A

    公开(公告)日:2022-04-29

    申请号:CN202210336486.0

    申请日:2022-04-01

    Abstract: 本发明公开了一种基于位点等效增强的脑机接口解码方法及装置,该方法通过对采样点进行跨周期的位点等效变换实现训练数据的数据增强并生成等效排列集合,利用训练数据构建解码模板,对增强数据进行任务相关成分分析求解空间滤波器,根据等效排列集合定向重排测试信号或验证信号,计算空间滤波后重排信号与解码模板的皮尔森相关系数,利用朴素贝叶斯对相关系数分类并进行投票,最终完成稳态视觉诱发电位的解码。本发明的基于位点等效增强的脑机接口解码方法,可实现在小样本和短刺激条件下的稳态视觉诱发电位解码,降低了使用脑机接口的时间成本,提高了脑机接口系统的可用性和友好性,有利于成果向应用转化。

    脑机接口康复方法、装置、电子设备和存储介质

    公开(公告)号:CN116919424A

    公开(公告)日:2023-10-24

    申请号:CN202311079901.X

    申请日:2023-08-24

    Abstract: 本申请提供一种脑机接口康复方法、装置、电子设备和存储介质。其中,该方法包括显示目标周期运动的视觉视频刺激;视觉视频刺激用于诱发被试大脑产生响应;响应包括稳态运动视觉诱发电位SSMVEP和感觉运动节律SMR;通过脑电采集系统采集被试在接受视觉视频刺激时的脑电数据;根据SSMVEP,确定并显示具体类别的刺激;分析SMR,评估具体类别的刺激对应的被试具体脑区的运动功能恢复情况,并输出评估结果;在运动功能恢复情况不符合预期恢复情况下,通过经颅电刺激tES设备对被试具体脑区施加电刺激进行神经调控。

    一种无监督聚类的睡眠脑电信号分期方法、设备和介质

    公开(公告)号:CN115989997A

    公开(公告)日:2023-04-21

    申请号:CN202211405517.X

    申请日:2022-11-10

    Abstract: 本发明公开了一种无监督聚类的睡眠脑电信号分期方法、设备和介质,该方法基于睡眠信号的功率谱密度特征在高维特征空间中存在特定流形结构的假设,通过UMAP降维算法将功率谱密度特征降至二维平面;此时用户在睡眠过程中的状态变化过程对应特征点在二维平面上的运动轨迹;使用中值滤波方法对特征点的运动轨迹进行平滑处理后,即可使用高斯混合模型对低维特征点进行聚类,从而将特征点分配到对应睡眠状态的聚类簇,以获取到最终的脑电信号分期结果。本发明无需提供人工标注的真实睡眠状态标签,具有实施成本低、计算速度快、睡眠分期结果可靠的优点。

    片上电极集成的无线肌电SoC系统、芯片及采集装置

    公开(公告)号:CN115444426A

    公开(公告)日:2022-12-09

    申请号:CN202211395311.3

    申请日:2022-11-09

    Abstract: 本发明公开了片上电极集成的无线肌电SoC系统、芯片及采集装置,包括:输入电极:用于传输采集到的肌电信号;差分放大器:用于对所述肌电信号进行放大处理,得到放大肌电模拟信号;信号处理模块:用于对所述放大肌电模拟信号进行转换,得到已编码串行肌电数字信号;射频传输模块:用于将所述已编码串行肌电数字信号向外发射,以及将通过无线能量传输技术接收外界传输的能量输入电源模块;电源模块:用于为无线肌电SoC系统供电;时钟模块:用于将所述时钟频率供给无线肌电SoC系统。本发明减小信号传输的误差和芯片封装面积,实现芯片输入电极端与芯片端距离最小化,降低引线键合导致的信号传输误差,保证信号完整性,同时减小芯片封装面积。

    复杂脑肌交互闭环功能网络框架的构建方法

    公开(公告)号:CN114569139B

    公开(公告)日:2022-11-01

    申请号:CN202210176343.8

    申请日:2022-02-25

    Abstract: 本发明提供了一种复杂脑肌交互闭环功能网络框架的构建方法,涉及多模态信息融合领域。本发明通过脑功能网络拓展,构建皮层‑肌肉‑皮层闭环拓扑网络解释人体运动控制系统中协同工作模式的变化,同时利用扩展的偏定向相干方法赋予区分因果关系的方向性特征,建立闭环网络的功能连通性和有效连通性,以图形可视化的方式客观描述与肌肉活动相关的皮层网络的动态演变过程,极大提升了电生理信息在评估患者上肢运动功能障碍上的应用价值。

    一种应用于脑机接口芯片的多通道混合斩波方法及系统

    公开(公告)号:CN114983424A

    公开(公告)日:2022-09-02

    申请号:CN202210925703.X

    申请日:2022-08-03

    Abstract: 本发明公开了一种应用于脑机接口芯片的多通道混合斩波方法及系统,包括以下步骤:步骤S1:采集得到的差分信号传输至多个通道对应的斩波调制单元进行斩波调制至斩波频率,得到斩波调制脑电信号;步骤S2:伪随机时钟产生器生成呈现伪随机变化的伪随机斩波控制信号;步骤S3:进行信号放大处理,得到每个所述通道对应的放大脑电信号;步骤S4:进行斩波解调制得到原始脑电信号;步骤S5进行谐波噪声滤除,得到脑电信号;步骤S6:通过数据选择器在地址选择信号的控制下,选择任意一路数据作为脑电模拟信号,转换为离散的数字信号。本发明消除了传统分时复用通道间串扰问题,降低了芯片面积和整体功耗,减小斩波频率上的斩波噪声密度。

Patent Agency Ranking